① 有哪些大數據分析案例
如下:
1. 大數據應用案例之:醫療行業
1)Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
2)大數據配合喬布斯癌症治療
喬布斯是世界上第一個對自身所有DNA和腫瘤DNA進行排序的人。為此,他支付了高達幾十萬美元的費用。他得到的不是樣本,而是包括整個基因的數據文檔。醫生按照所有基因按需下葯,最終這種方式幫助喬布斯延長了好幾年的生命。
2. 大數據應用案例之:能源行業
1)智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。
通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。
因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。
2)丹麥的維斯塔斯風能系統(Vestas Wind Systems)運用大數據,系統依靠的是BigInsights軟體和IBM超級計算機,分析出應該在哪裡設置渦輪發電機,事實上這是風能領域的重大挑戰。在一個風電場20多年的運營過程中,准確的定位能幫助工廠實現能源產出的最大化。
為了鎖定最理想的位置,Vestas分析了來自各方面的信息:風力和天氣數據、湍流度、地形圖、公司遍及全球的2.5萬多個受控渦輪機組發回的感測器數據。這樣一套信息處理體系賦予了公司獨特的競爭優勢,幫助其客戶實現投資回報的最大化。
3. 大數據應用案例之:通信行業—通過大數據分析挽回核心客戶
法國電信-Orange集團旗下的波蘭電信公司Telekomunikacja Polska是波蘭最大的語音和寬頻固網供應商,希望有效的途徑來准確預測並解決客戶流失問題。
他們決定進行客戶細分,方法是構建一張「社交圖譜」- 分析客戶數百萬個電話的數據記錄,特別關注 「誰給誰打了電話」以及「打電話的頻率」兩個方面。「社交圖譜」把公司用戶分成幾大類,如:「聯網型」、「橋梁型」、「領導型」以及「跟隨型」。
這樣的關系數據有助電信服務供應商深入洞悉一系列問題,如:哪些人會對可能「棄用」公司服務的客戶產生較大的影響?挽留最有價值客戶的難度有多大?運用這一方法,公司客戶流失預測模型的准確率提升了47%。
4、大數據應用案例之:零售業—大數據幫零售企業制定促銷策略
北美零售商百思買在北美的銷售活動非常活躍,產品總數達到3萬多種,產品的價格也隨地區和市場條件而異。由於產品種類繁多,成本變化比較頻繁,一年之中,變化可達四次之多。
結果,每年的調價次數高達12萬次。最讓高管頭疼的是定價促銷策略。公司組成了一個11人的團隊,希望透過分析消費者的購買記錄和相關信息,提高定價的准確度和響應速度。
定價團隊的分析圍繞著三個關鍵維度:
1)數量:團隊需要分析海量信息。他們收集了上千萬的消費者的購買記錄,從客戶不同維度分析,了解客戶對每種產品種類的最高接受能力,從而為產品定出最佳價位。
2)多樣性:團隊除了分析了購買記錄這種結構化的數據外,他們也利用社交媒體發帖這種新型的非結構化數據。由於消費者需要在零售商專頁上點贊或留言以獲得優惠券,團隊利用情感分析公式來分析專頁上消費者的情緒,從而判斷他們對於公司的促銷活動是否滿意,並微調促銷策略。
3)速度:為了實現價值最大化,團隊對數據進行實時或近似實時的處理。他們成功地根據一個消費者既往的麥片購買記錄,為身處超市麥片專櫃的他/她即時發送優惠券,為客戶帶來便利性和驚喜。
透過這一系列的活動,團隊提高了定價的准確度和響應速度,為零售商新增銷售額和利潤數千萬美元。
5、大數據應用案例之:網路營銷行業(SEM)
很多企業在做SEM的過程中,都有這樣的感觸:每年都會花費大量的預算在SEM推廣中,但是因為關鍵詞投入產出無法可視化,常常花了很多錢卻不見具體的回報。
在競爭如此激烈的SEM市場中,企業需要一個高效的數據分析工具來盡可能地幫企業優化SEM推廣,例如BDP,來幫企業節省不必要的支出,提升整體的經營績效。
企業可藉助數據平台提供的網路營銷整合解決方案,打通各個搜索引擎營銷(SEM)、在線客服系統和CRM系統,營銷競價人員無需掌握復雜的編程技術,簡單拖拽即可生成報表,觀察每一個關鍵詞的投入和產出,分析每一個頁面的轉化,有效降低投放成本。
通過BDP實況分析數據,可以快速洞悉對手關鍵詞的投放時段、地域及排名,並對其進行可視化的分析,實時監控自己和競爭對手的投放情況,了解對手的投放策略,支持自定義設置數據更新的時間點、監控頻次和時段,及時調整策略。知已知彼,才能百戰不殆。
6、大數據應用案例之:電商行業
意料之外:胸部最大的是新疆妹子。曾經淘寶平台顯示,中國女性購買最多的文胸尺碼為B罩杯。B罩杯佔比達41.45%,其中又以75B的銷量最好,其次是A罩杯,購買佔比達25.26%,C罩杯只有8.96%。
雖然淘寶數據平台不能代表一切,但是結合現實來看,這個也具有普遍的代表性,只能感慨中國女性普遍size。在文胸顏色中,黑色最為暢銷,黑色絕對是百搭,每個女性必備。
從省市排名,胸部最大的是新疆妹子。這些數據都對於文胸店鋪而言是很好的參考,為店鋪的庫存、定價、款式選擇等策略都有奠定數據基礎。
7、大數據應用案例之:娛樂行業
微軟大數據成功預測奧斯卡21項大獎。2013年,微軟紐約研究院的經濟學家大衛•羅斯柴爾德(David Rothschild)利用大數據成功預測24個奧斯卡獎項中的19個,成為人們津津樂道的話題。
今年羅斯柴爾德再接再厲,成功預測第86屆奧斯卡金像獎頒獎典禮24個獎項中的21個,繼續向人們展示現代科技的神奇魔力。
總的來說,大數據的終極目標並不僅僅是改變競爭環境,而是徹底扭轉整個競爭環境,帶來新機遇,企業需要應勢而變。企業只有認識到這一點,使用合適的數據分析產品、聰明地使用和管理數據,才能在長期競爭中成為終極贏家。
② 大數據分析 應用的九大領域
大數據分析 應用的九大領域
隨著大數據的應用越來越廣泛,應用的行業也越來越低,我們每天都可以看到大數據的一些新奇的應用,從而幫助人們從中獲取到真正有用的價值。很多組織或者個人都會受到大數據的分析影響,但是大數據是如何幫助人們挖掘出有價值的信息呢?下面就讓我們一起來看看九個價值非常高的大數據的應用,這些都是大數據在分析應用上的關鍵領域:
1.理解客戶、滿足客戶服務需求
大數據的應用目前在這領域是最廣為人知的。重點是如何應用大數據更好的了解客戶以及他們的愛好和行為。企業非常喜歡搜集社交方面的數據、瀏覽器的日誌、分析出文本和感測器的數據,為了更加全面的了解客戶。在一般情況下,建立出數據模型進行預測。比如美國的著名零售商Target就是通過大數據的分析,得到有價值的信息,精準得預測到客戶在什麼時候想要小孩。另外,通過大數據的應用,電信公司可以更好預測出流失的客戶,沃爾瑪則更加精準的預測哪個產品會大賣,汽車保險行業會了解客戶的需求和駕駛水平,政府也能了解到選民的偏好。
2.業務流程優化
大數據也更多的幫助業務流程的優化。可以通過利用社交媒體數據、網路搜索以及天氣預報挖掘出有價值的數據,其中大數據的應用最廣泛的就是供應鏈以及配送路線的優化。在這2個方面,地理定位和無線電頻率的識別追蹤貨物和送貨車,利用實時交通路線數據制定更加優化的路線。人力資源業務也通過大數據的分析來進行改進,這其中就包括了人才招聘的優化。
3.大數據正在改善我們的生活
大數據不單單只是應用於企業和政府,同樣也適用我們生活當中的每個人。我們可以利用穿戴的裝備(如智能手錶或者智能手環)生成最新的數據,這讓我們可以根據我們熱量的消耗以及睡眠模式來進行追蹤。而且還利用利用大數據分析來尋找屬於我們的愛情,大多數時候交友網站就是大數據應用工具來幫助需要的人匹配合適的對象。
4.提高醫療和研發
大數據分析應用的計算能力可以讓我們能夠在幾分鍾內就可以解碼整個DNA.並且讓我們可以制定出最新的治療方案。同時可以更好的去理解和預測疾病。就好像人們戴上智能手錶等可以產生的數據一樣,大數據同樣可以幫助病人對於病情進行更好的治療。大數據技術目前已經在醫院應用監視早產嬰兒和患病嬰兒的情況,通過記錄和分析嬰兒的心跳,醫生針對嬰兒的身體可能會出現不適症狀做出預測。這樣可以幫助醫生更好的救助嬰兒。
5.提高體育成績
現在很多運動員在訓練的時候應用大數據分析技術了。比如例如用於網球鼻塞的IBMSlamTracker工具,我們使用視頻分析來追蹤足球或棒球比賽中每個球員的表現,而運動器材中的感測器技術(例如籃球或高爾夫俱樂部)讓我們可以獲得對比賽的數據以及如何改進。很多精英運動隊還追蹤比賽環境外運動員的活動-通過使用智能技術來追蹤其營養狀況以及睡眠,以及社交對話來監控其情感狀況。
6.優化機器和設備性能
大數據分析還可以讓積極和設備在應用上更加智能化和自主化。例如,大數據工具曾經就被谷歌公司利用研發谷歌自駕汽車。豐田的普瑞就配有相機、GPS以及感測器,在交通上能夠安全的駕駛,不需要人類的敢於。大數據工具還可以應用優化智能電話。
7.改善安全和執法
大數據現在已經廣泛應用到安全執法的過程當中。想必大家都知道美國安全局利用大數據進行恐怖主義打擊,甚至監控人們的日常生活。而企業則應用大數據技術進行防禦網路攻擊。警察應用大數據工具進行捕捉罪犯,信用卡公司應用大數據工具來檻車欺詐性交易。
8.改善我們的城市
大數據還被應用改善我們日常生活的城市。例如基於城市實時交通信息、利用社交網路和天氣數據來優化最新的交通情況。目前很多城市都在進行大數據的分析和試點。
9.金融交易
大數據在金融行業主要是應用金融交易。高頻交易(HFT)是大數據應用比較多的領域。其中大數據演算法應用於交易決定。現在很多股權的交易都是利用大數據演算法進行,這些演算法現在越來越多的考慮了社交媒體和網站新聞來決定在未來幾秒內是買出還是賣出。
以上九個是大數據應用最多的九個領域,當然隨著大數據的應用越來越普及,還有很多新的大數據的應用領域,以及新的大數據應用。
以上是小編為大家分享的關於大數據分析 應用的九大領域的相關內容,更多信息可以關注環球青藤分享更多干貨
③ 大數據時代下的社交網路
大數據時代下的社交網路
互聯網的發展為社交網路的發展奠定了基礎,社交網路的發展同時也為讓互聯網的關系網越來越復雜,在這個需求背景下,就提出了一個社交圖譜的概念,也就是網路社交上表示人與人之間關系的網路圖譜,但是我們有沒有想到,其實社交圖譜也是大數據時代的一個產物。
FB的創始人扎克伯格就是提出了社交圖譜的概念,也讓他的網站獲得了成就,在大數據時代下的社交網路在對於用戶分類、用戶行為以及人際關繫上有更加明顯的表現力,通過這些用戶行為分析,可以時時刻刻與用戶之間進行互動看,也可以為用戶提供很多需要的信息和觀點。
最近很多社交網站也開始使用大數據了,進行網路的分析,從一些簡單的人際關系的分析,到與他們相關行為的數據分析,不管是對人還是對時間,可能彼此之間都有一些內在的聯系,因為社交網路時時都有動態在更新,根據這些信息來預測用戶接下來可能產生的行為,這個是社交圖譜也是大數據分析的目的之一,但是真的可以這么快就實現嗎?還是說只是天方夜譚,當然現階段的社交大數據還是處於探索階段,更好的潛能還在等待著被激發。
同時大數據技術的應用也使得社交網路的圖形分析有了更進一步的發展,伴隨著需求的不斷發展,數據的產生以及數據收集的難度越來越大,大數據分析工作也在不斷的增長,這也促進了大數據的分析實時性以及需求性都達到了一個新的高度,當然我們也不會滿足現階段的大數據規模,通過不斷的推動社交網路圖形化,大數據的復雜程度也會提升到下一個高度。
如果你對大數據有興趣,同時你對社交網路也有興趣,隨著大數據技術的不斷發展,在未來的很長一段時間里,將會有更多的組織從事這方面的研究和發展,社交網路圖形化的處理技術也會不斷發展。
以上是小編為大家分享的關於大數據時代下的社交網路的相關內容,更多信息可以關注環球青藤分享更多干貨
④ 大數據到底是什麼行業啊,具體是干什麼的啊
這不是某個行業,它是一個大數據分析,也就是說不斷的收集數據,然後進行分析,然後對行業的發展有幫助。
⑤ 通過各類大數據分析網站,對主流的國外社交媒體軟體進行分析
大數據行業因為數據量巨大的特點,傳統的工具已經難以應付,因此就需要我們使用更為先進的現代化工具,以下是幾款常用軟體:
1、思邁特軟體Smartbi大數據分析平台:定位為一站式滿足所有用戶全面需求場景的大數據分析平台。它融合了BI定義的所有階段,對接各種業務資料庫、數據倉庫和大數據分析平台,進行加工處理、分析挖掘和可視化展現;滿足所有用戶的各種數據分析應用需求,如大數據分析、可視化分析、探索式分析、企業報表平台、應用分享等等。
2、HPCC,(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了「重大挑戰項目:高性能計算與通信」的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。
2、Hadoop是一個能夠對大量數據進行分布式處理的軟體框架。但是Hadoop是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。
數據分析工具靠不靠譜,來試試Smartbi,思邁特軟體Smartbi經過多年持續自主研發,凝聚大量商業智能最佳實踐經驗,整合了各行業的數據分析和決策支持的功能需求。滿足最終用戶在企業級報表、數據可視化分析、自助探索分析、數據挖掘建模、AI智能分析等大數據分析需求
⑥ 數據分析 社交 數據 用什麼工具
iCharts iCharts這個工具不知你用不用,是關於數據方面的一個工具,然後推薦一本數據方面的常識書是城市數據團的《數據不說謊:大數據之下的世界》即了解數據方面的信息,還可以鍛煉數據分析和邏輯性,希望對你有所幫助
http://proct.dangdang.com/25093277.html
⑦ 大數據時代,大數據概念,大數據分析是什麼意思
大數據概念就是指大數據,指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據時代是IT行業術語。最早提出「大數據」時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」
大數據分析是指對規模巨大的數據進行分析。大數據可以概括為4個V, 數據量大(Volume)、速度快(Velocity)、類型多(Variety)、價值(Value)。
(7)社交數據大數據分析擴展閱讀:
大數據分析的實例應用:
數據分析成為巴西世界盃賽事外的精彩看點。伴隨賽場上球員的奮力角逐,大數據也在全力演繹世界盃背後的分析故事。
一向以嚴謹著稱的德國隊引入專門處理大數據的足球解決方案,進行比賽數據分析,優化球隊配置,並通過分析對手數據找到比賽的「制敵」方式;谷歌、微軟、Opta等通過大數據分析預測賽果...... 大數據,不僅成為賽場上的「第12人」,也在某種程度上充當了世界盃的"預言帝"。
大數據分析邂逅世界盃,是大數據時代的必然發生,而大數據分析也將在未來改變我們生活的方方面面。
⑧ 微信的大數據分析功能怎麼用
數據統計功能大致分為用戶分析、圖文分析、消息分析三類:
用戶分析查看任意時間段內用戶數的增長、取消關注和用戶屬性等統計;
群發圖文消息分析,查看任意時間段內圖文消息群發效果的統計,包括送達人數,閱讀人數和轉發人數等分析;
消息分析可查看針對用戶發送的消息的統計,包括消息發送人數,次數等分析;
成為開發者的公眾號,可以查看介面調用的相關統計。
⑨ 大數據分析技術應用領域有哪些
大數據分析應用的十大應用領域!每當我們說到大數據應用分析的時候,很多人都會覺得那是一個龐大的伺服器集群,其實大數據應用分析平台開發在人類社會實踐中發揮著巨大的優勢,它被應用的深度和廣度超乎我們的相像,今天小編給大家介紹一下大數據應用分析平台的十大常見應用領域,一起來了解一下吧。
1、了解和定位客戶:這是大數據分析應用平台目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好,從而對客戶或產品進行定位。
2、了解和優化業務流程:大數據分析應用平台也越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。
3、提供個性化服務:大數據分析應用平台不僅適用於公司和政府,也適用於我們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。假如:智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象等。
4、改善醫療保健和公共衛生:大數據分析應用平台的數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。
5、提高體育運動技能:如今大多數頂尖的體育賽事都採用了大數據分析技術。可採集並分析運動員在訓練之外跟蹤運動員的營養和睡眠情況。以及運動場所的狀況、天氣狀況、以及學習期間運動員的個人表現做出最佳決策,以減少球員不必要的受傷。
6、提升科學研究:大數據分析應用帶來的無限可能性正在改變科學研究。比如政府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。
7、提升機械設備性能:大數據分析應用使機械設備更加智能化、自動化。
8、強化安全和執法能力:大數據分析應用在改善安全和執法方面得到了廣泛應用。
9、改善城市和國家建設:分析應用被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。
10、金融交易:分析應用在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。
隨著大數據分析應用平台開發成本的降低和人們可接受度的提高,大數據會更加普及到日常生活中,未來將會出現哪些新的應用領域,我們值得期待。
⑩ 足球社交大數據分析的背後
足球社交大數據分析的背後
互聯網的發展為數據收集創造了平台,並不斷擴大數據收集的范圍和規模。而社交平台的發展則讓每個人都有機會成為發聲者,企業有更多方式和渠道獲得每個個體的反饋並提升反饋速度。在新互聯網時代,大數據正在改變著人們的日常生活。
在本屆世界盃上,大數據分析技術不光幫助德國隊取得了冠軍,在賽事報道上,社交、移動和大數據技術也正在帶來無限的可能性。 過去,傳統媒體主要以單向的方式傳播信息,例如通過電視轉播世界盃比賽,通過報紙報道比賽進展,發表足球評論等。而隨著社交和移動技術的發展,每一位普通球迷都可以利用互聯網和社交媒體,以自己獨特的角度對一場比賽進行記錄。調查發現,在社交媒體上,大多數人和在真實世界裡完全不一樣,在現實生活中很多人反而會隱藏一些方面,在社交媒體上的展現更接近真實自我。這一切變化,讓人與人、人與媒體之間的溝通與連接也隨之改變。
在2014年世界盃上,騰訊首先突破,通過與IBM合作,利用社交媒體數據分析系統對網路上球迷熱議話題、球迷性格進行分析,利用大數據分析技術改變傳統的報道方式。大數據技術讀懂球迷心聲我們日常生活中產生的數據,20%是結構化的數據,例如企業通過內部IT系統收集的信息或者通過機器和感測器收集的數據,而在數據資源中高達80%是非結構化數據,例如電子郵件、圖像、音頻、視頻以及社交平台上的信息等。傳統的大數據分析面對的是如何管理、調配海量數據的問題,而與傳統的結構化數據相比,非結構化的社交數據是人產生的,這其中不僅包括成文的句子,還包括網路用語、表情,甚至錯別字等。例如,在社交平台上,球迷對於一個球星的態度不會是明確的喜歡或者厭惡,而會以各種各樣不同的方式表達出來,其真正的態度究竟是支持還是否定,是需要IBM通過分析給出結論的。
如何讓機器理解大量的人類語言背後隱藏的情感?將大量的非結構化數據轉換為結構化數據是社交大數據分析面臨的首要難題,這不僅需要IT技術的支持,也需要心理學、語義分析等知識和技術的綜合運用。 為深度挖掘社交平台上形式豐富的非結構化信息,提取有指導意義的洞察,IBM構建了Blue Pulse系統,利用機器自學習方法和自然語言分析技術,傾聽網民「心聲」。
以上是小編為大家分享的關於足球社交大數據分析的背後的相關內容,更多信息可以關注環球青藤分享更多干貨