① 大數據具備哪四個特徵
大數據具有四大特徵,分別是:易變性、高速性、多樣性、海量性。
大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
② 大數據的特徵有哪些
Volume:數據量巨大。
體量大是大數據區分於傳統數據最顯著的特徵。 一般關系型資料庫處理的數據量在TB級,大數據所處理的數據量通常在PB級以上。
Variety:數據類型多。
大數據所處理的計算機數據類型早已不是單一的文本形式或者結構化資料庫中的表,它包括訂單、日誌、BLOG、微博、音頻、視頻等各種復雜結構的數據。
Velocity:數據流動快。
速度是大數據區分於傳統數據的重要特徵。 在海量數據面前,需要實時分析獲取需要的信息,處理數據的效率就是組織的生命。
③ 大數據的特性
1、數據類型繁多:對數據的處理能力提出了更高的要求,例如網路日誌、音頻、視頻、圖片、地理位置信息等等多類型的數據。
2、處理速度快和時效性要求高:是區分於傳統的數據挖掘,也這是大數據最顯著的特徵。
3、數據價值密度相對較低:隨著物聯網的廣泛應用,無處不在的信息感知和信息海量,但是價值密度卻較低。大數據時代亟待解決的難題是:如何通過強大的機器演算法可以更迅速地完成數據的價值「提純」。
二、大數據的四大特點
1、海量性:有IDC 最近的報告預測稱,在2020 年,將會擴大50 倍的全球數據量。現在來看,大數據的規模一直是一個不斷變化的指標,單一數據集的規模範圍可以從幾十TB到數PB不等。也就是說,存儲1 PB數據是需要兩萬台配備50GB硬碟的個人電腦。而且,很多你意想不到的來源都能產生數據。
2、高速性:指數據被創建和移動的速度。在高速網路時代,創建實時數據流成為了流行趨勢,主要是通過基於實現軟體性能優化的高速電腦處理器和伺服器。企業一般需了解怎麼快速創建數據,還需知道怎麼快速處理、分析並返回給用戶,來滿足他們的一些需求。
3、多樣性:由於新型多結構數據,導致數據多樣性的增加。還包括網路日誌、社交媒體、手機通話記錄、互聯網搜索及感測器網路等數據類型造成。
4、易變性:大數據會呈現出多變的形式和類型,是由於大數據具有多層結構,相比傳統的業務數據,大數據有不規則和模糊不清的特性,導致很難甚至不能使用傳統的應用軟體來分析。隨時間演變傳統業務數據已擁有標準的格式,能夠被標準的商務智能軟體識別。現在來看,要處理並從各種形式呈現的復雜數據中挖掘價值,成為了企業面臨的挑戰。
④ 大數據的四個特點是什麼
大數據是什麼:大數據(big data)是指無法在一定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。大數據有五大特點,即大量(Volume)、高速(Velocity)、多樣(Variety)、低價值密度(Value)、真實性(Veracity)。它並沒有統計學的抽樣方法,只是觀察和追蹤發生的事情。
大數據的四個特點是:大量、高速、多樣、價值
⑤ 大數據的四大特點,分別是
大數據的4V特徵:
Volume(規模性)、
Velocity(高速性)、
Variety(多樣性)、
Value(價值性)。
---維克托邁爾-舍恩伯格和肯尼斯克耶編寫的《大數據時代》
⑥ 大數據的四大特徵
1、海量性
例如,IDC 最近的報告預測稱,到2020 年,全球數據量將擴大50 倍。目前,大數據的規模尚是一個不斷變化的指標,單一數據集的規模範圍從幾十TB到數PB不等。
2、多樣性
數據多樣性的增加主要是由於新型多結構數據,以及包括網路日誌、社交媒體、互聯網搜索、手機通話記錄及感測器網路等數據類型造成。
3、高速性
高速描述的是數據被創建和移動的速度。在高速網路時代,通過基於實現軟體性能優化的高速電腦處理器和伺服器,創建實時數據流已成為流行趨勢。企業不僅需要了解如何快速創建數據,還必須知道如何快速處理、分析並返回給用戶,以滿足他們的實時需求。
4、易變性
大數據具有多層結構,這意味著大數據會呈現出多變的形式和類型。相較傳統的業務數據,大數據存在不規則和模糊不清的特性,造成很難甚至無法使用傳統的應用軟體進行分析。
⑦ 大數據的四個基本特徵
大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。
大數據的四個基本特徵是:
數據量大,TB,PB,乃至EB等數據量的數據需要分析處理。
2.
要求快速響應,市場變化快,要求能及時快速的響應變化,那對數據的分析也要快速,在性能上有更高要求,所以數據量顯得對速度要求有些「大」。
3.
數據多樣性:不同的數據源,非結構化數據越來越多,需要進行清洗,整理,篩選等操作,變為結構數據。
4.價值密度低,由於數據採集的不及時,數據樣本不全面,數據可能不連續等等,數據可能會失真,但當數據量達到一定規模,可以通過更多的數據達到更真實全面的反饋。
⑧ 大數據的四大特點分別是什麼
一、大量
大數據的特徵首先就體現為“大”,從先Map3時代,一個小小的MB級別的Map3就可以滿意很多人的需求,然而跟著時刻的推移,存儲單位從曩昔的GB到TB,乃至現在的PB、EB級別。只要數據體量達到了PB級別以上,才幹被稱為大數據。跟著信息技能的高速發展,數據開端爆發性增長。交際網路、移動網路、各種智能東西等,都成為數據的來歷。
二、高速
便是經過演算法對數據的邏輯處理速度十分快,1秒規律,可從各種類型的數據中快速獲得高價值的信息,這一點也是和傳統的數據挖掘技能有著本質的不同。而且這些數據是需要及時處理的,由於花費很多本錢去存儲效果較小的歷史數據是十分不劃算的。
三、多樣
如果只要單一的數據,那麼這些數據就沒有了價值。廣泛的數據來歷,決議了大數據方式的多樣性。任何方式的數據都可以產生效果,目前使用最廣泛的便是推薦系統,如淘寶,網易雲音樂、今天頭條等,這些平台都會經過對用戶的日誌數據進行剖析,然後進一步推薦用戶喜歡的東西。
四、價值
這也是大數據的核心特徵。實際國際所產生的數據中,有價值的數據所佔份額很小。你如果有1PB以上的全國所有20-35年輕人的上網數據的時分,那麼它天然就有了商業價值,比方經過剖析這些數據,我們就知道這些人的愛好,進而指導產品的發展方向等等。如果有了全國幾百萬患者的數據,根據這些數據進行剖析就能猜測疾病的發生,這些都是大數據的價值。
關於大數據的四大特點分別是什麼,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑨ 大數據四大特徵
說起大數據,估計大家都覺得只聽過概念,但是具體是什麼東西,怎麼定義,沒有一個標準的東西
《大數據時代》提到了大數據的4個特徵:
1.大量
大數據的特徵首先就體現為「大」,從先Map3時代,一個小小的MB級別的Map3就可以滿足很多人的需求,然而隨著時間的推移,存儲單位從過去的GB到TB,乃至現在的PB、EB級別。只有數據體量達到了PB級別以上,才能被稱為大數據。1PB等於1024TB,1TB等於1024G,那麼1PB等於1024*1024個G的數據。隨著信息技術的高速發展,數據開始爆發性增長。社交網路(微博、推特、臉書)、移動網路、各種智能工具,服務工具等,都成為數據的來源。淘寶網近4億的會員每天產生的商品交易數據約20TB;臉書約10億的用戶每天產生的日誌數據超過300TB。迫切需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據。
2.高速
就是通過演算法對數據的邏輯處理速度非常快,1秒定律,可從各種類型的數據中快速獲得高價值的信息,這一點也是和傳統的數據挖掘技術有著本質的不同。大數據的產生非常迅速,主要通過互聯網傳輸。生活中每個人都離不開互聯網,也就是說每天個人每天都在向大數據提供大量的資料。並且這些數據是需要及時處理的,因為花費大量資本去存儲作用較小的歷史數據是非常不劃算的,對於一個平台而言,也許保存的數據只有過去幾天或者一個月之內,再遠的數據就要及時清理,不然代價太大。基於這種情況,大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。數據無時無刻不在產生,誰的速度更快,誰就有優勢。
3.多樣
如果只有單一的數據,那麼這些數據就沒有了價值,比如只有單一的個人數據,或者單一的用戶提交數據,這些數據還不能稱為大數據。廣泛的數據來源,決定了大數據形式的多樣性。比如當前的上網用戶中,年齡,學歷,愛好,性格等等每個人的特徵都不一樣,這個也就是大數據的多樣性,當然了如果擴展到全國,那麼數據的多樣性會更強,每個地區,每個時間段,都會存在各種各樣的數據多樣性。任何形式的數據都可以產生作用,目前應用最廣泛的就是推薦系統,如淘寶,網易雲音樂、今日頭條等,這些平台都會通過對用戶的日誌數據進行分析,從而進一步推薦用戶喜歡的東西。日誌數據是結構化明顯的數據,還有一些數據結構化不明顯,例如圖片、音頻、視頻等,這些數據因果關系弱,就需要人工對其進行標注。
4.價值
這也是大數據的核心特徵。現實世界所產生的數據中,有價值的數據所佔比例很小。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識。你如果有1PB以上的全國所有20-35年輕人的上網數據的時候,那麼它自然就有了商業價值,比如通過分析這些數據,我們就知道這些人的愛好,進而指導產品的發展方向等等。如果有了全國幾百萬病人的數據,根據這些數據進行分析就能預測疾病的發生,這些都是大數據的價值。大數據運用之廣泛,如運用於農業、金融、醫療等各個領域,從而最終達到改善社會治理、提高生產效率、推進科學研究的效果。
大數據已經成為過去幾年中大部分行業的游戲規則,行業領袖,學者和其他知名的利益相關者都同意這一點,隨著大數據繼續滲透到我們的日常生活中,圍繞大數據的炒作正在轉向實際使用中的真正價值。
所以現在加入大數據的行列,前景是很不錯的,找一個專業的機構去學習也是可以
⑩ 大數據的四個典型特徵
大數據的四個典型特徵
大數據(Big Data)是指「無法用現有的軟體工具提取、存儲、搜索、共享、分析和處理的海量的、復雜的數據集合。」業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。
一是數據體量巨大(Volume)。截至目前,人類生產的所有印刷材料的數據量是200PB(1PB=210TB),而歷史上全人類說過的所有的話的數據量大約是5EB(1EB=210PB)。當前,典型個人計算機硬碟的容量為TB量級,而一些大企業的數據量已經接近EB量級。
二是數據類型繁多(Variety)。這種類型的多樣性也讓數據被分為結構化數據和非結構化數據。相對於以往便於存儲的以文本為主的結構化數據,非結構化數據越來越多,包括網路日誌、音頻、視頻、圖片、地理位置信息等,這些多類型的數據對數據的處理能力提出了更高要求。
三是價值密度低(Value)。價值密度的高低與數據總量的大小成反比。以視頻為例,一部1小時的視頻,在連續不間斷的監控中,有用數據可能僅有一二秒。如何通過強大的機器演算法更迅速地完成數據的價值「提純」成為目前大數據背景下亟待解決的難題。
四是處理速度快(Velocity)。這是大數據區分於傳統數據挖掘的最顯著特徵。根據IDC的「數字宇宙」的報告,預計到2020年,全球數據使用量將達到35.2ZB。在如此海量的數據面前,處理數據的效率就是企業的生命。