⑴ 利用編程語言代碼二進制轉十進制演算法,值得收藏的編程干貨
二進制轉十進制的演算法:將二進制數的每一位與 2 的對應次冪相乘,然後將這些乘積相加。例如:二進制數1011轉十進制,則:(12^3) + (02^2) + (12^1) + (12^0) = 8 + 0 + 2 + 1 = 11。因此,1011(二進制) = 11(十進制)。
以下是各主流編程語言的二進制轉十進制演算法代碼範例:
Python:使用 int() 函數將二進制字元串轉換為十進制整數。例如:binary_num = 「1011」 ;decimal_num = int(binary_num, 2);print(decimal_num) # 11。也可以使用:binary_num = 「1011」;decimal_num = 0;binary_num = binary_num[::-1];for i in range(len(binary_num)):decimal_num += int(binary_num[i])*(2**i);print(decimal_num) # 11。
C:使用strtol()函數將二進制字元串轉換為十進制整數。例如:#include;#include;int main() { char binary_num[] = 「1011」; int decimal_num; decimal_num = strtol(binary_num, NULL, 2); printf(「%d\n」, decimal_num); return 0; }。
C++:使用stoi()函數將二進制字元串轉換為十進制整數。例如:#include;int main() { std::string binary_num = 「1011」; int decimal_num; decimal_num = std::stoi(binary_num, 0, 2); std::cout << decimal_num << std::endl; return 0; }。
Java:使用Integer.parseInt()函數將二進制字元串轉換為十進制整數。例如:String binary_num = 「1011」; int decimal_num; decimal_num = Integer.parseInt(binary_num, 2); System.out.println(decimal_num); # 11。
JavaScript:使用parseInt()函數將二進制字元串轉換為十進制整數。例如:let binary_num = 「1011」; let decimal_num; decimal_num = parseInt(binary_num, 2); console.log(decimal_num); # 11。
PHP:使用bindec()函數將二進制字元串轉換為十進制整數。例如:$binary_num = 「1011」; $decimal_num = bindec($binary_num); echo $decimal_num; # 11。
SQL:使用CAST或CONVERT函數將二進制字元串轉換為十進制整數。例如:使用CAST函數:SELECT CAST(1011 AS UNSIGNED) AS decimal_num; 使用CONVERT函數:SELECT CONVERT(UNSIGNED, 1011) AS decimal_num; 注意:這里的1011是二進制字元串,在使用CAST或CONVERT函數時需要將其轉換為UNSIGNED類型。
此方法在資料庫查詢場景下適用,具體在SQL中的運算處理可能需根據實際情況調整。
⑵ c語言有哪些演算法
C語言演算法
C語言作為一種編程語言,其演算法與其他編程語言相似,但具體實現可能會因語言特性而異。以下是一些在C語言中常用的演算法:
排序演算法
排序演算法是數據處理中非常基礎的演算法之一。在C語言中,常用的排序演算法包括冒泡排序、選擇排序、插入排序、快速排序、歸並排序等。這些排序演算法可以用於對數組、列表或其他數據結構進行排序操作。每種排序演算法都有其特點和適用場景。
搜索演算法
搜索演算法是用於在數據結構中查找特定元素的演算法。在C語言中,常見的搜索演算法包括線性搜索、二分搜索等。這些演算法在數據規模較大時能夠提高搜索效率。
數據結構操作相關演算法
C語言中,還有許多與數據結構操作相關的演算法,如鏈表操作演算法(插入、刪除、遍歷等)、棧操作演算法、隊列操作演算法等。這些演算法涉及到數據結構的創建、維護以及操作,是編程中非常基礎且重要的部分。
數值計算相關演算法
此外,還有一些數值計算相關的演算法,如求解最大公約數、最小公倍數、開方等演算法的C語言實現。這些演算法在計算機科學及數學領域有廣泛應用。
總之,C語言演算法的種類繁多,涉及到數據處理、數據結構操作以及數值計算等多個方面。在實際編程過程中,根據具體需求和場景選擇合適的演算法,能夠提高程序的效率和性能。
⑶ C語言演算法有哪些 並舉例和分析
演算法大全(C,C++)
一、 數論演算法
1.求兩數的最大公約數
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;
2.求兩數的最小公倍數
function lcm(a,b:integer):integer;
begin
if a<b then swap(a,b);
lcm:=a;
while lcm mod b>0 do inc(lcm,a);
end;
3.素數的求法
A.小范圍內判斷一個數是否為質數:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;
B.判斷longint范圍內的數是否為素數(包含求50000以內的素數表):
procere getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i<50000 do begin
if p[i] then begin
j:=i*2;
while j<50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}
function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i]>=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}
二、圖論演算法
1.最小生成樹
A.Prim演算法:
procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{尋找離生成樹最近的未加入頂點k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {將頂點k加入生成樹}
{生成樹中增加一條新的邊k到closest[k]}
{修正各點的lowcost和closest值}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}
B.Kruskal演算法:(貪心)
按權值遞增順序刪去圖中的邊,若不形成迴路則將此邊加入最小生成樹。
function find(v:integer):integer; {返回頂點v所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;
procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定義n個集合,第I個集合包含一個元素I}
p:=n-1; q:=1; tot:=0; {p為尚待加入的邊數,q為邊集指針}
sort;
{對所有邊按權值遞增排序,存於e[I]中,e[I].v1與e[I].v2為邊I所連接的兩個頂點的序號,e[I].len為第I條邊的長度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;
2.最短路徑
A.標號法求解單源點最短路徑:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指頂點i到源點的最短路徑}
mark:array[1..maxn] of boolean;
procere bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1為源點}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {對每一個已計算出最短路徑的點}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}
B.Floyed演算法求解所有頂點對之間的最短路徑:
procere floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路徑上j的前驅結點}
for k:=1 to n do {枚舉中間結點}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;
C. Dijkstra 演算法:
var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路徑上I的前驅結點}
mark:array[1..maxn] of boolean;
procere dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循環一次加入一個離1集合最近的結點並調整其他結點的參數}
min:=maxint; u:=0; {u記錄離1集合最近的結點}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;
3.計算圖的傳遞閉包
Procere Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;
4.無向圖的連通分量
A.深度優先
procere dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {對結點I染色}
c[i]:=color;
dfs(I,color);
end;
end;
B 寬度優先(種子染色法)
5.關鍵路徑
幾個定義: 頂點1為源點,n為匯點。
a. 頂點事件最早發生時間Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0;
b. 頂點事件最晚發生時間 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n);
c. 邊活動最早開始時間 Ee[I], 若邊I由<j,k>表示,則Ee[I] = Ve[j];
d. 邊活動最晚開始時間 El[I], 若邊I由<j,k>表示,則El[I] = Vl[k] – w[j,k];
若 Ee[j] = El[j] ,則活動j為關鍵活動,由關鍵活動組成的路徑為關鍵路徑。
求解方法:
a. 從源點起topsort,判斷是否有迴路並計算Ve;
b. 從匯點起topsort,求Vl;
c. 算Ee 和 El;
6.拓撲排序
找入度為0的點,刪去與其相連的所有邊,不斷重復這一過程。
例 尋找一數列,其中任意連續p項之和為正,任意q 項之和為負,若不存在則輸出NO.
7.迴路問題
Euler迴路(DFS)
定義:經過圖的每條邊僅一次的迴路。(充要條件:圖連同且無奇點)
Hamilton迴路
定義:經過圖的每個頂點僅一次的迴路。
一筆畫
充要條件:圖連通且奇點個數為0個或2個。
9.判斷圖中是否有負權迴路 Bellman-ford 演算法
x[I],y[I],t[I]分別表示第I條邊的起點,終點和權。共n個結點和m條邊。
procere bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {枚舉每一條邊}
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return true;
end;
10.第n最短路徑問題
*第二最短路徑:每舉最短路徑上的每條邊,每次刪除一條,然後求新圖的最短路徑,取這些路徑中最短的一條即為第二最短路徑。
*同理,第n最短路徑可在求解第n-1最短路徑的基礎上求解。
三、背包問題
*部分背包問題可有貪心法求解:計算Pi/Wi
數據結構:
w[i]:第i個背包的重量;
p[i]:第i個背包的價值;
1.0-1背包: 每個背包只能使用一次或有限次(可轉化為一次):
A.求最多可放入的重量。
NOIP2001 裝箱問題
有一個箱子容量為v(正整數,o≤v≤20000),同時有n個物品(o≤n≤30),每個物品有一個體積 (正整數)。要求從 n 個物品中,任取若千個裝入箱內,使箱子的剩餘空間為最小。
l 搜索方法
procere search(k,v:integer); {搜索第k個物品,剩餘空間為v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit; {s[n]為前n個物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;
l DP
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
實現:將最優化問題轉化為判定性問題
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 邊界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
優化:當前狀態只與前一階段狀態有關,可降至一維。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;
B.求可以放入的最大價值。
F[I,j] 為容量為I時取前j個背包所能獲得的最大價值。
F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[ i,j-1] }
C.求恰好裝滿的情況數。
DP:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
if j+now<=n then inc(c[j+now],a[j]);
a:=c;
end;
2.可重復背包
A求最多可放入的重量。
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
狀態轉移方程為
f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])
B.求可以放入的最大價值。
USACO 1.2 Score Inflation
進行一次競賽,總時間T固定,有若干種可選擇的題目,每種題目可選入的數量不限,每種題目有一個ti(解答此題所需的時間)和一個si(解答此題所得的分數),現要選擇若干題目,使解這些題的總時間在T以內的前提下,所得的總分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*p[j] } (0<=k<= i div w[j])
其中f[i,j]表示容量為i時取前j種背包所能達到的最大值。
*實現:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time>=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t>f[i] Then f[i]:=t;
End;
Writeln(f[M]);
End.
C.求恰好裝滿的情況數。
Ahoi2001 Problem2
求自然數n本質不同的質數和的表達式的數目。
思路一,生成每個質數的系數的排列,在一一測試,這是通法。
procere try(dep:integer);
var i,j:integer;
begin
cal; {此過程計算當前系數的計算結果,now為結果}
if now>n then exit; {剪枝}
if dep=l+1 then begin {生成所有系數}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;
思路二,遞歸搜索效率較高
procere try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest<=0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;
{main: try(1,n); }
思路三:可使用動態規劃求解
USACO1.2 money system
V個物品,背包容量為n,求放法總數。
轉移方程:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
for k:=1 to n div now do
if j+now*k<=n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {讀入第一個物品的重量}
i:=0; {a[i]為背包容量為i時的放法總數}
while i<=n do begin
a[i]:=1; inc(i,now); end; {定義第一個物品重的整數倍的重量a值為1,作為初值}
for i:=2 to v do
begin
read(now);
update; {動態更新}
end;
writeln(a[n]);
四、排序演算法
A.快速排序:
procere qsort(l,r:integer);
var i,j,mid:integer;
begin
i:=l;j:=r; mid:=a[(l+r) div 2]; {將當前序列在中間位置的數定義為中間數}
repeat
while a[i]<mid do inc(i); {在左半部分尋找比中間數大的數}
while a[j]>mid do dec(j);{在右半部分尋找比中間數小的數}
if i<=j then begin {若找到一組與排序目標不一致的數對則交換它們}
swap(a[i],a[j]);
inc(i);dec(j); {繼續找}
end;
until i>j;
if l<j then qsort(l,j); {若未到兩個數的邊界,則遞歸搜索左右區間}
if i<r then qsort(i,r);
end;{sort}
B.插入排序:
思路:當前a[1]..a[i-1]已排好序了,現要插入a[i]使a[1]..a[i]有序。
procere insert_sort;
var i,j:integer;
begin
for i:=2 to n do begin
a[0]:=a[i];
j:=i-1;
while a[0]<a[j] do begin
a[j+1]:=a[j];
j:=j-1;
end;
a[j+1]:=a[0];
end;
end;{inset_sort}
C.選擇排序:
procere sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then swap(a[i],a[j]);
end;
D. 冒泡排序
procere bubble_sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=n downto i+1 do
if a[j]<a[j-1] then swap( a[j],a[j-1]); {每次比較相鄰元素的關系}
end;
E.堆排序:
procere sift(i,m:integer);{調整以i為根的子樹成為堆,m為結點總數}
var k:integer;
begin
a[0]:=a[i]; k:=2*i;{在完全二叉樹中結點i的左孩子為2*i,右孩子為2*i+1}
while k<=m do begin
if (k<m) and (a[k]<a[k+1]) then inc(k);{找出a[k]與a[k+1]中較大值}
if a[0]<a[k] then begin a[i]:=a[k];i:=k;k:=2*i; end
else k:=m+1;
end;
a[i]:=a[0]; {將根放在合適的位置}
end;
procere heapsort;
var
j:integer;
begin
for j:=n div 2 downto 1 do sift(j,n);
for j:=n downto 2 do begin
swap(a[1],a[j]);
sift(1,j-1);
end;
⑷ 編程語言都有哪些演算法
(一)基本演算法 : 1.枚舉 2.搜索: 深度優先搜索 廣度優先搜索 啟發式搜索 遺傳演算法 (二)數據結構的演算法 (三)數論與代數演算法 (四)計算幾何的演算法:求凸包 (五)圖論 演算法: 1.哈夫曼編碼 2.樹的遍歷 3.最短路徑 演算法 4.最小生成樹 演算法 5.最小樹形圖 6.網路流 演算法 7.匹配演算法 (六)動態規劃 (七)其他: 1.數值分析 2.加密演算法 3.排序 演算法 4.檢索演算法 5.隨機化演算法
希望採納
⑸ C語言 參加 NOIP 要學哪些演算法
C語言學習中,參加NOIP(全國青少年信息學奧林匹克競賽)需要掌握多種演算法,這些演算法對於提高編程能力至關重要。
首先,排序演算法是基礎中的基礎,包括快速排序、選擇排序、冒泡排序、堆排序、二叉排序樹和桶排序。掌握這些演算法能夠幫助你理解數據結構的基本操作。
其次,搜索演算法也是非常重要的。你需要學習深度優先搜索(DFS)和廣度優先搜索(BFS),並理解剪枝技術。在復習BFS時,可以順便復習哈希表的使用,這有助於優化你的搜索效率。
關於樹,你需要掌握樹的遍歷方法,包括二叉樹和二叉排序樹。了解二叉排序樹的查找、生成和刪除過程,以及堆(二叉堆和堆排序)的原理。Trie樹也是一種有趣的樹形結構,可以用來解決字元串匹配等問題。
圖論也是NOIP中的一個重要部分。你需要了解最小生成樹、最短路徑、計算圖的傳遞閉包等概念。連通分量是圖論中的一個關鍵概念,掌握並查集技術可以幫助你更好地解決這類問題。此外,還需要了解拓撲排序、關鍵路徑、哈密爾頓環、歐拉迴路等概念。
動態規劃是另一種重要的演算法,包括線性動規、區間動規和樹形動規。掌握這些方法可以讓你更好地解決許多問題。
分治法是另一種重要的演算法,它可以幫助你將復雜問題分解為多個子問題來解決。理解分治法的概念和應用能夠提高你的編程能力。
此外,貪心演算法也是NOIP中需要掌握的一種演算法,它可以幫助你快速找到最優解。
位運算是一種高效的編程技巧,可以用來進行優化。了解位運算的基本操作,如位與、位或、位異或等,可以幫助你提高程序效率。
最後,數學與程序設計的結合也是NOIP中需要掌握的一項技能。通過數學知識,你可以更好地理解演算法和數據結構,並提高編程能力。
NOIP的考試內容雖然不完全按照大綱來,但多做一些題總是沒錯的。你可以訪問www.tyvj.cn和www.rqnoj.cn等網站來刷題,提高自己的編程水平。
⑹ 軟體編程經常用到的演算法都有哪些
常用的演算法很多,但是對不同的編程語言來說,編程思路都是差不多的 給你幾個例子【ps:編程語言C#】 //非不拉器數列 int[] a = new int [20]; for(int i=0;i<20;i++) { if((i==0)||(i==1)) a[i]=1; else a[i]=a[i-1]+a[i-2]; } foreach(int j in a) Console.Write(j+" "); Console.ReadLine(); //素數 int i,j,n; for(i=1;i<=100;i++) { n= Convert.ToInt32(Math.Sqrt(i)) ; for(j=2;j<=n;j++) if(i%j==0) break; if(j>n) Console.Write(i+" "); } //楊輝三角 int i; int j; int[ ,] arry=new int [10,10]; arry[0, 0] = 1; arry[1, 0] = 1; arry[1, 1] = 1; for ( i = 2; i < 10; i++) { for ( j = 1; j < i ; j++) { arry[i, j] = arry[i - 1, j - 1] + arry[i - 1, j]; } arry[i, 0] = 1; arry[i, i] = 1; } for ( i = 0; i < 10;i++ ) { for (j = 0; j <= i; j++) { Console.Write(arry[i, j] + " "); } Console.WriteLine(); }
希望採納
⑺ 數學建模需要掌握哪些編程語言和技術
數學建模應當掌握的十類演算法及所需編程語言:
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)。
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)。
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、 Lingo軟體實現)。
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備)。
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中)。
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用)。
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)。
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)。
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)。
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進行處理)。