Ⅰ c++中單雙精度再編程中怎樣確定簡單通俗的來。
簡單來說,單精度(single precision)浮點數精度比雙精度(double precision)浮點數范圍小,精度低,前者十進制有效數字7~8位,後者十進制有效數字14~15位。一般是指IEC-559/IEEE-754標準定義的二進制浮點數。
1L和2L錯誤,C++中有三種浮點數float、double和long double,精度(包括范圍)float<=double<=long double,具體精度由實現定義。一般實現中, float即為單精度浮點數,double即為雙精度浮點數。
單精度精度相對比較小,但相對來說比較快,只是在PC上有硬體浮點運算器實現時相差可能相對不明顯。對於性能較低(嵌入式設備)或效率要求很高的場合(例如字形渲染),應該盡可能自定義的定點數代替浮點數,即使因為復雜性等原因而不得不用浮點數,也盡可能用單精度代替雙精度(除非精度要求很高或者范圍很大float放不下)。而其它情況下(效率要求一般的數值計算),用double代替float可以少關心一些精度問題。
另外,long double是長雙精度(long double)浮點數,往往用軟體實現(CPU中的FPU可能只支持80位二進制浮點數,不能實現長雙精度浮點數的計算),可能會顯著慢於float和double運算。
注意,C++中默認不加後綴的浮點常數字面量表示是double類型,加後綴f或F是float,l是double,L是long double。
浮點數算術表達式中如果有不同精度的運算數,整數會轉換為浮點數,低精度運算數會隱式地轉換為高精度運算數。
Ⅱ 鐢╟璇璦緙栫▼錛岃$畻f錛坸錛夌殑鍊箋傝佹眰浠庨敭鐩樹笂杈撳叆x鐨勫礆紝綺懼害鎺у埗鍦0.001鍐咃紵
C璇璦涓錛屼竴鑸鐢╯canf ("錛卍",&a);鏉ヨ誨彇浠庨敭鐩樹笂杈撳叆鐨勬暟瀛楋紝鍏朵腑a涓哄凡瀹氫箟鍙橀噺
鍦ㄨ緭鍑烘椂
printf(''%.3f''錛宖(x));鍙浠ヤ嬌綺劇『搴鎺у埗鍦0.001鍐
Ⅲ 鎴戠殑AI璇曢獙綺懼害瀹氫箟
鎴戠殑AI璇曢獙綺懼害瀹氫箟
綺懼害瀹氫箟綃
Accuracy measure - 鍑嗙『搴︽祴閲
Correctness assessment - 姝g『鎬ц瘎浼
Degree of exactness - 綺劇『紼嬪害
Precision vs. recall - 綺懼害涓庡彫鍥炵巼
Consistency of measurements - 嫻嬮噺鐨勪竴鑷存
Error margin - 璇宸鑼冨洿
Reliability of data - 鏁版嵁鐨勫彲闈犳
Precision in scientific research - 縐戝︾爺絀朵腑鐨勭簿紜搴
Statistical precision - 緇熻$簿紜搴
Precision engineering - 綺懼瘑宸ョ▼
Precision medicine - 綺懼噯鍖誨
Precision manufacturing - 綺懼瘑鍒墮
Precision agriculture - 綺懼噯鍐滀笟
Precision tools - 綺懼瘑宸ュ叿
Precision cutting - 綺劇『鍒囧壊
Precision measurement instruments - 綺懼瘑嫻嬮噺浠鍣
Precision optics - 綺懼瘑鍏夊
Precision mechanics - 綺懼瘑鏈烘
Precision machining - 綺懼瘑鍔犲伐
Precision control systems - 綺懼瘑鎺у埗緋葷粺
Precision in data analysis - 鏁版嵁鍒嗘瀽涓鐨勭簿紜搴
Precision in financial forecasting - 閲戣瀺棰勬祴涓鐨勭簿紜搴
Precision in weather prediction - 澶╂皵棰勬姤涓鐨勭簿紜搴
Precision in navigation systems - 瀵艱埅緋葷粺涓鐨勭簿紜搴
Precision in GPS technology - GPS鎶鏈涓鐨勭簿紜搴
Precision in medical diagnostics - 鍖誨﹁瘖鏂涓鐨勭簿紜搴
Precision in DNA sequencing - DNA嫻嬪簭涓鐨勭簿紜搴
Precision in drug delivery - 鑽鐗╄緭閫佷腑鐨勭簿紜搴
Precision in surgical proceres - 鎵嬫湳紼嬪簭涓鐨勭簿紜搴
Precision in robotics - 鏈哄櫒浜烘妧鏈涓鐨勭簿紜搴
Precision in artificial intelligence - 浜哄伐鏅鴻兘涓鐨勭簿紜搴
Precision in computer programming - 璁$畻鏈虹紪紼嬩腑鐨勭簿紜搴
Precision in language translation - 璇璦緲昏瘧涓鐨勭簿紜搴
Precision in image recognition - 鍥懼儚璇嗗埆涓鐨勭簿紜搴
Precision in speech synthesis - 璇闊沖悎鎴愪腑鐨勭簿紜搴
Precision in sentiment analysis - 鎯呮劅鍒嗘瀽涓鐨勭簿紜搴
Precision in recommendation systems - 鎺ㄨ崘緋葷粺涓鐨勭簿紜搴
Precision in fraud detection - 嬈鴻瘓媯嫻嬩腑鐨勭簿紜搴
Precision in customer segmentation - 瀹㈡埛緇嗗垎涓鐨勭簿紜搴
Precision in market research - 甯傚満鐮旂┒涓鐨勭簿紜搴
Precision in risk assessment - 椋庨櫓璇勪及涓鐨勭簿紜搴
Precision in decision making - 鍐崇瓥涓鐨勭簿紜搴
Precision in project management - 欏圭洰綆$悊涓鐨勭簿紜搴
Precision in time management - 鏃墮棿綆$悊涓鐨勭簿紜搴
Precision in communication - 娌熼氫腑鐨勭簿紜搴
Precision in problem-solving - 瑙e喅闂棰樹腑鐨勭簿紜搴
Precision in interpersonal relationships - 浜洪檯鍏崇郴涓鐨勭簿紜搴
Precision in creative expression - 鍒涢犳ц〃杈句腑鐨勭簿紜搴
Precision in athletic performance - 榪愬姩琛ㄧ幇涓鐨勭簿紜搴
Precision in musical composition - 闊充箰鍒涗綔涓鐨勭簿紜搴
Precision in artistic techniques - 鑹烘湳鎶宸т腑鐨勭簿紜搴
Precision in dance movements - 鑸炶箞鍔ㄤ綔涓鐨勭簿紜搴
Precision in culinary skills - 鐑歸オ鎶宸т腑鐨勭簿紜搴
Precision in fashion design - 鏃惰呰捐′腑鐨勭簿紜搴
Precision in interior decoration - 瀹ゅ唴瑁呴グ涓鐨勭簿紜搴
Precision in architectural drawings - 寤虹瓚緇樺浘涓鐨勭簿紜搴
Precision in photography - 鎽勫獎涓鐨勭簿紜搴
Precision in painting techniques - 緇樼敾鎶宸т腑鐨勭簿紜搴
Precision in calligraphy strokes - 涔︽硶絎旂敾涓鐨勭簿紜搴
Precision in pottery shaping - 闄惰壓閫犲瀷涓鐨勭簿紜搴