Ⅰ 如何用VB對」一元三次方程求根」問題進行編程
針對方程"ax^3+bx^2+cx+d=0"的求根程序。
控制項只需一個Command1,結果顯示在「立即」中。
代碼如下。(參考)
========================
Private Sub Command1_Click()
Dim x1r As Double, x1i As Double, x2r As Double, x2i As Double, x3r As Double, x3i As Double
Dim ret As String
Const eq = "ax^3+bx^2+cx+d=0"
a = InputBox("請輸入a", eq)
b = InputBox("請輸入b", eq)
c = InputBox("請輸入c", eq)
d = InputBox("請輸入d", eq)
ret = CubicEquation(a, b, c, d, x1r, x1i, x2r, x2i, x3r, x3i) '5x^3+4x^2+3x-12=0
Debug.Print "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" & ret
Debug.Print x1r; " + "; x1i; " i"
Debug.Print x2r; " + "; x2i; " i"
Debug.Print x3r; " + "; x3i; " i"
End Sub
Private Function CubicEquation _
(ByVal a As Double, ByVal b As Double, ByVal c As Double, ByVal d As Double, _
x1r As Double, x1i As Double, x2r As Double, x2i As Double, x3r As Double, x3i As Double) As String
'Cubic equation(v2.2), coded by www.dayi.net btef (please let this line remain)
Dim e As Double, f As Double, g As Double, h As Double, delta As Double
Dim r As Double, sita As Double, pi As Double, rr As Double, ri As Double
If a = 0 Then
CubicEquation = "Not a cubic equation: a = 0"
Exit Function
End If
'pi = 3.14159265358979
pi = 4 * Atn(1)
b = b / a 'simplify to a=1: x^3+bx^2+cx+d=0
c = c / a
d = d / a
e = -b ^ 2 / 3 + c 'substitute x=y-b/3: y^3+ey+f=0
f = (2 * b ^ 2 - 9 * c) * b / 27 + d
If e = 0 And f = 0 Then
x1r = -b / 3
x2r = x1r
x3r = x1r
CubicEquation = "3 same real roots:"
ElseIf e = 0 Then 'need to deal with e = 0, or it will cause z = 0 later.
r = -f 'y^3+f=0, y^3=-f
r = Cur(r)
x1r = r - b / 3 'a real root
If r > 0 Then 'r never = 0 since g=f/2, f never = 0 there
sita = 2 * pi / 3
x2r = r * Cos(sita) - b / 3
x2i = r * Sin(sita)
Else
sita = pi / 3
x2r = -r * Cos(sita) - b / 3
x2i = -r * Sin(sita)
End If
x3r = x2r
x3i = -x2i
CubicEquation = "1 real root and 2 image roots:"
Else 'substitute y=z-e/3/z: (z^3)^2+fz^3-(e/3)^3=0, z^3=-g+sqr(delta)
g = f / 2 '-q-sqr(delta) is ignored
h = e / 3
delta = g ^ 2 + h ^ 3
If delta < 0 Then
r = Sqr(g ^ 2 - delta)
sita = Argument(-g, Sqr(-delta)) 'z^3=r(con(sita)+isin(sita))
r = Cur(r)
rr = r - h / r
sita = sita / 3 'z1=r(cos(sita)+isin(sita))
x1r = rr * Cos(sita) - b / 3 'y1=(r-h/r)cos(sita)+i(r+h/r)sin(sita), x1=y1-b/3
sita = sita + 2 * pi / 3 'no image part since r+h/r = 0
x2r = rr * Cos(sita) - b / 3
sita = sita + 2 * pi / 3
x3r = rr * Cos(sita) - b / 3
CubicEquation = "3 real roots:"
Else 'delta >= 0
r = -g + Sqr(delta)
r = Cur(r)
rr = r - h / r
ri = r + h / r
If ri = 0 Then
CubicEquation = "3 real roots:"
Else
CubicEquation = "1 real root and 2 image roots:"
End If
x1r = rr - b / 3 'a real root
If r > 0 Then 'r never = 0 since g=f/2, f never = 0 there
sita = 2 * pi / 3
x2r = rr * Cos(sita) - b / 3
x2i = ri * Sin(sita)
Else 'r < 0
sita = pi / 3
x2r = -rr * Cos(sita) - b / 3
x2i = -ri * Sin(sita)
End If
x3r = x2r
x3i = -x2i
End If
End If
End Function
Private Function Cur(v As Double) As Double
If v < 0 Then
Cur = -(-v) ^ (1 / 3)
Else
Cur = v ^ (1 / 3)
End If
End Function
Private Function Argument(a As Double, b As Double) As Double
Dim sita As Double, pi As Double
'pi = 3.14159265358979
pi = 4 * Atn(1)
If a = 0 Then
If b >= 0 Then
Argument = pi / 2
Else
Argument = -pi / 2
End If
Else
sita = Atn(Abs(b / a))
If a > 0 Then
If b >= 0 Then
Argument = sita
Else
Argument = -sita
End If
ElseIf a < 0 Then
If b >= 0 Then
Argument = pi - sita
Else
Argument = pi + sita
End If
End If
End If
End Function