『壹』 各種編程語言的深度學習庫整理大全!
各種編程語言的深度學習庫整理大全!
Python1. Theano是一個python類庫,用數組向量來定義和計算數學表達式。它使得在Python環境下編寫深度學習演算法變得簡單。在它基礎之上還搭建了許多類庫。
1.Keras是一個簡潔、高度模塊化的神經網路庫,它的設計參考了Torch,用Python語言編寫,支持調用GPU和CPU優化後的Theano運算。
2.Pylearn2是一個集成大量深度學習常見模型和訓練演算法的庫,如隨機梯度下降等。它的功能庫都是基於Theano之上。
3.Lasagne是一個搭建和訓練神經網路的輕量級封裝庫,基於Theano。它遵循簡潔化、透明化、模塊化、實用化和專一化的原則。
4.Blocks也是一個基於Theano的幫助搭建神經網路的框架。
2. Caffe是深度學習的框架,它注重於代碼的表達形式、運算速度以及模塊化程度。它是由伯克利視覺和學習中心(Berkeley Vision and Learning Center, BVLC)以及社區成員共同開發。谷歌的DeepDream項目就是基於Caffe框架完成。這個框架是使用BSD許可證的C++庫,並提供了Python調用介面。
3. nolearn囊括了大量的現有神經網路函數庫的封裝和抽象介面、大名鼎鼎的Lasagne以及一些機器學習的常用模塊。
4. Genism也是一個用Python編寫的深度學習小工具,採用高效的演算法來處理大規模文本數據。
5. Chainer在深度學習的理論演算法和實際應用之間架起一座橋梁。它的特點是強大、靈活、直觀,被認為是深度學習的靈活框架。
6. deepnet是基於GPU的深度學習演算法函數庫,使用Python語言開發,實現了前饋神經網路(FNN)、受限玻爾茲曼機(RBM)、深度信念網路(DBN)、自編碼器(AE)、深度玻爾茲曼機(DBM)和卷積神經網路(CNN)等演算法。
7. Hebel也是深度學習和神經網路的一個Python庫,它通過pyCUDA控制支持CUDA的GPU加速。它實現了最重要的幾類神經網路模型,提供了多種激活函數和模型訓練方法,例如momentum、Nesterov momentum、dropout、和early stopping等方法。
8. CXXNET是一個基於MShadow開發的快速、簡潔的分布式深度學習框架。它是一個輕量級、易擴展的C++/CUDA神經網路工具箱,提供友好的Python/Matlab介面來進行訓練和預測。
9. DeepPy是基於NumPy的深度學習框架。
10. DeepLearning是一個用C++和Python共同開發的深度學習函數庫。
11. Neon是Nervana System 的深度學習框架,使用Python開發。
Matlab
1. ConvNet 卷積神經網路是一類深度學習分類演算法,它可以從原始數據中自主學習有用的特徵,通過調節權重值來實現。
2. DeepLearnToolBox是用於深度學習的Matlab/Octave工具箱,它包含深度信念網路(DBN)、棧式自編碼器(stacked AE)、卷積神經網路(CNN)等演算法。
3. cuda-convet是一套卷積神經網路(CNN)代碼,也適用於前饋神經網路,使用C++/CUDA進行運算。它能對任意深度的多層神經網路建模。只要是有向無環圖的網路結構都可以。訓練過程採用反向傳播演算法(BP演算法)。
4. MatConvNet是一個面向計算機視覺應用的卷積神經網路(CNN)Matlab工具箱。它簡單高效,能夠運行和學習最先進的機器學習演算法。
CPP
1. eblearn是開源的機器學習C++封裝庫,由Yann LeCun主導的紐約大學機器學習實驗室開發。它用基於能量的模型實現卷積神經網路,並提供可視化交互界面(GUI)、示例以及示範教程。
2. SINGA是Apache軟體基金會支持的一個項目,它的設計目標是在現有系統上提供通用的分布式模型訓練演算法。
3. NVIDIA DIGITS是用於開發、訓練和可視化深度神經網路的一套新系統。它把深度學習的強大功能用瀏覽器界面呈現出來,使得數據科學家和研究員可以實時地可視化神經網路行為,快速地設計出最適合數據的深度神經網路。
4. Intel? Deep Learning Framework提供了Intel?平台加速深度卷積神經網路的一個統一平台。
Java
1. N-Dimensional Arrays for Java (ND4J) 是JVM平台的科學計算函數庫。它主要用於產品中,也就是說函數的設計需求是運算速度快、存儲空間最省。
2. Deeplearning4j 是第一款商業級別的開源分布式深度學習類庫,用Java和Scala編寫。它的設計目的是為了在商業環境下使用,而不是作為一款研究工具。
3. Encog是一個機器學習的高級框架,涵蓋支持向量機、人工神經網路、遺傳編程、貝葉斯網路、隱馬可夫模型等,也支持遺傳演算法。
JavaScript
1. Convnet.js 由JavaScript編寫,是一個完全在瀏覽器內完成訓練深度學習模型(主要是神經網路)的封裝庫。不需要其它軟體,不需要編譯器,不需要安裝包,不需要GPU,甚至不費吹灰之力。
Lua
1. Torch是一款廣泛適用於各種機器學習演算法的科學計算框架。它使用容易,用快速的腳本語言LuaJit開發,底層是C/CUDA實現。Torch基於Lua編程語言。
Julia
1. Mocha是Julia的深度學習框架,受C++框架Caffe的啟發。Mocha中通用隨機梯度求解程序和通用模塊的高效實現,可以用來訓練深度/淺層(卷積)神經網路,可以通過(棧式)自編碼器配合非監督式預訓練(可選)完成。它的優勢特性包括模塊化結構、提供上層介面,可能還有速度、兼容性等更多特性。
Lisp
1. Lush(Lisp Universal Shell)是一種面向對象的編程語言,面向對大規模數值和圖形應用感興趣的廣大研究員、實驗員和工程師們。它擁有機器學習的函數庫,其中包含豐富的深度學習庫。
Haskell
1. DNNGraph是Haskell用於深度神經網路模型生成的領域特定語言(DSL)。
.NET
1. Accord.NET 是完全用C#編寫的.NET機器學習框架,包括音頻和圖像處理的類庫。它是產品級的完整框架,用於計算機視覺、計算機音頻、信號處理和統計應用領域。
R
1. darch包可以用來生成多層神經網路(深度結構)。訓練的方法包括了對比散度的預訓練和眾所周知的訓練演算法(如反向傳播法或共軛梯度法)的細調。
2. deepnet實現了許多深度學習框架和神經網路演算法,包括反向傳播(BP)、受限玻爾茲曼機(RBM)、深度信念網路(DBP)、深度自編碼器(Deep autoencoder)等等。
『貳』 怎麼看一個軟體的e語言內容
如果你想查看一個軟體的E語言內容,可以按照以下步驟進行操作:
1. 打開該軟體所在的安裝目錄,尋找E語言腳本文件。通常情況下,這些文件的擴展名可能是「.e」、「.eb」或者「.ecs」等。
2. 如果找到了E語正和物言腳本文件,你可以嘗試使用E語言開發環境(如易語言)等工具打開文件,並查看文件內容。
3. 如果你沒有相應的工具,你可以通過文本編輯器(如記事本、Sublime Text等)打開E語言腳本文件,舉液並查看其中的代碼內容。
需要注意的是,E語言是一種編程語言,如果你不熟悉編程知識,可能難以理解代碼的含義和作用。此外棚嘩,一些軟體可能使用加密、壓縮等技術對E語言腳本進行了保護,使其難以查看和修改。在進行任何操作之前,請確保你已經備份好原始文件,避免不必要的損失。
『叄』 應該學習什麼編程
如果是為了學習而學編程的話 推薦你學VB或VF 都超級簡單的 都支持可視化編輯的 你可以像畫圖一樣變程序 要的是能學到計算機的思想 學懂其中的一門 然後再去看 C C++ JAVA 都很簡單了 入門還是推薦學VB VF 學的時候別把電腦想得太聰明 電腦很笨的 編程序的時候盡量把自己當成電腦 哈
如果是想學習編程要去賺錢的話 那就多得多了 C++是必學的 算是基礎 學數據結構 JAVA也可以的 很多人C++學不好 但學JAVA就可以很容易接受 先慢慢學著 一會你會發現還有N多語言可以學的 平時在學校或者自己學的編程語言在公司里都很難用的 也只是學個方法 到時候再繼續學習拉