導航:首頁 > 編程知識 > 學編程要用到哪些數學知識

學編程要用到哪些數學知識

發布時間:2023-05-12 10:23:45

① 想學計算機都需要精通什麼數學知識

想學計算機都需要精通什麼數學知識

學編程需要用到微積分,離散數學,數學電路,還有函數,以及各種數學思想,對抽象思維和形象思想要求都比較高。
學編程要具備一定的基礎,總結之有以下幾方面:
1、數學基礎 從計算機發展和應用的歷史來看計算機的數學模型和體系結構等都是有數學家提出的,最早的計算機也是為數值計算而設計的。因此,要學好計算機就要有一定的數學基礎,出學者有高中水平就差不多了。
2、邏輯思維能力的培養學程序設計要有一定的邏輯思維能力,「邏思力」的培養要長時間的實踐鍛煉。要想成為一名優秀的程序員,最重要的是掌握編程思想。要做到這一點必須在反復的實踐、觀察、分析、比較、總結中逐漸地積累。因此在學習編程過程中,不必等到什麼都完全明白了才去動手實踐,只要明白了大概,就要敢於自己動手去體驗。誰都有第一次。有些問題只有通過實踐後才能明白,也只有實踐才能把老師和書上的知識變成自己的,高手都是這樣成材的。

不知道樓主想學習電腦軟體還是硬體?我大學上了四年的計算機科學與技術,高等數學、離散數學、概率統計、線性代數電路原理、模擬電子技術、數字邏輯、數值分析、計算機原理、微型計算機技術、計算機系統結構、計算機網路、高級語言、匯編語言、數據結構、操作系統、資料庫原理、編譯原理、、人工智慧、計算方法、以及演算法設計與分析、面向對象方法、計算機英語等該學習的都備者學習了,但是四年下來基本上都忘完了又。畢業後進公司,搞得是網路和硬體,上大學時候的知識除了計算機網路還用的上外,其餘的都基本上用不老雀上。開始工作又是重頭開始學習侍滾早,剛開始時候做個RJ45型網卡介面水晶頭、拆開主機箱這些基本的都不會,因為大學沒學習。囧ing~~
所以,如果現在想學習計算機,需要根據你要從事的方向而定:
1、如果單純基本的電腦軟硬體學習,根本不需要學習數學知識,需要哪方面學習哪方面,市面上關於計算機硬體介紹的書很多啦,看幾本然後找台電腦DIY下,就熟悉啦。如果想深入硬體設計與研究,那大學學習的高數等數學科目還有電路等物理科目都要學習。
2、如果想搞軟體程序設計,數據結構、面向對象方法以及找個流行的設計語言設計書目(譬如java程序設計學習教程)等可以3個月內搞定(如果你喜愛程序設計的話)。
3、如果就是簡單滴工具學習類的。其他的都不需要學習,根據喜歡想要學習的工具方向學習即可,比如photoshop類的工具學習,找個參考書、網上下點視頻,3各月專心研究下來就是個PS高手了。
以上是個人淺見。僅供樓主參考。計算機學習還是靠興趣,行行出狀元。那都是興趣與天賦的綜合。缺一方面都不會成功滴。

學計算機需要那些數學知識

離散數學、組合數學、數論、高等代數、抽象代數、運籌學、數值代數、概率論、數理統計、隨機過程

學計算機硬體需要哪些數學知識

計算機專業學生需要學好數學,不是需要學習哪些數學知識,而是需要數學的邏輯思維能力。
計算機專業是計算機硬體與軟體相結合、面向系統、側重應用的寬口徑專業。通過基礎教學與專業訓練,培養基礎知識扎實、知識面寬、工程實踐能力強,具有開拓創新意識,在計算機科學與技術領域從事科學研究、教育、開發和應用的高級人才。

學習計算機需要哪方面數學知識?

演算法 數據結構 流程圖

計算機與數學知識

本科生:高等數學、線性代數、概率論與數理統計、離散數學等
研究生還會學習組合數學、數學分析等

學習計算機編程演算法需要哪些數學知識?

離散很重要,因為集合論和圖論,尤其是後者涉及得非常廣泛。其他涉及得真的不多。要學好演算法,一定要多打代碼,多思考~~

我想學習計算機密碼學,需要學好哪些數學知識。

個人讀過半年這東西,學電子商務時學的。
看你怎麼打算,要深入研究計算機密碼就要學高數、概率論、離散數學、組合數學。
如果只是想知道一下加密解密原理,直接看本《密碼學》就行了!
現在加密,私鑰,數字簽證那些銀行認證中心有很多現成的了!

計算機的哪個領域最需要數學知識?

和演算法相關的核心代碼 。

計算機編程都要哪些數學知識

主要是邏輯的思維能力,我是計算機專業,也學習編程類的,我們主修了離散數學,是關於邏輯思維的。你看看那類的書籍吧!挺有用的。

② 學習編程需要會哪些數學知識

計算機二進制需要學習數學,由二進制衍生的c語言不需要太多,但是一改就報廢,c語言是底層編程,簡單說也就是機器操作儀器,二進制就是製造機器,但是c語言一變你就要幾乎是徹底的重學。

③ 編程所需要的數學知識

計數的能力: for循環中經常用, 小學生都會。
數字的加減乘除 : 每種編程語言都會內置支持, 都不需要你自己算
余數和模: 偶爾會用得到
集合運算: 交集、並集、差集 , 編程中用的不多。
布爾運算: AND , OR, 非
各種進制: 二進制、十進制、十六進制
還有哪些? 我想不起來了, 歡迎補充。
當然這和我從事的編程領域有極大關系, 如果我做的不是Web開發, 而是搜索,游戲, 安全,演算法,人工智慧等, 那對數學的要求估計就開始飆升了。
其實計算機的基礎是數學, 只是我們一直在應用層編程, 體會不到罷了。
比如說我們日常使用的計算機,絕大部分都是所謂馮諾依曼結構(參見文章《馮·馮諾依曼計算機的誕生》) ,這個結構可以說是圖靈機這個概念機器的具體實現,而圖靈機就是一個純數學的東西啊 ,沒有圖靈機這么偉大的抽象作為數學基礎, 現代的計算機是製造不出來的。
再比如說密碼領域需要很多數論的知識,RSA演算法就涉及到大素數的分解;
我們常用的Mysql, Oracle 等關系資料庫的底層基礎是離散數學的笛卡爾乘積;
通信系統中很重要的一個原理就是傅里葉變換。
編譯器會用到有限狀態機;
數據的壓縮會用到各種數學的演算法;
項目管理中的進度管理,甘特圖數學基礎就是圖論。

④ 學習編程需要哪些數學知識

強烈同意一樓的說法.
編程似乎與數學沒有多大的關系,但是擁有良好的數學基礎,對編程的效率有極大的提高.要想成為編程高手,最好具備以下數學知識:
線性代數,數值分析
積分變換,復變函數,變分法,概率論,隨機過程,集合論,拓撲學引論 ,離散數學,數據結構

⑤ 與編程有關的數學知識點是那些

與編程有關的數學知識點是那些?

三角函數,立體幾何,高等數學。
看你要搞哪方面編程了,比如三維變換,那就得搞立體幾何
數據分析就得搞高等數學
不過三角函數是一定要會的。
除此之外還有統計學,離散數學等……

與奧運有關的數學知識

是廣西的老人么? 好象是..不是很清楚..反正他寫的幻方破了吉尼斯記錄..就是為北京奧運加油的..

和算盤有關的數學知識

加法口訣折疊
不進位的加進位的加
直加滿五加進十加破五進十加
加一:一上一,一下五去四,一去九進一
加二:二上二,二下五去三,二去八進一
加三:三上三,三下五去二,三去七進一
加四:四上四,四下五去一,四去六進一
加五:五上五,五去五進一
加六:六上六,六去四進一,六上一去五進一
加七:七上七,七去三進一,七上二去五進一
加八:八上八,八去二進一,八上三去五進一
加九:九上九,九去一進一,九上四去五進一

與日常生活有關的數學知識

這個不少呢吧。像家居裝飾,喜歡用黃金分割比,讓人看著舒服。像存款取款,會用到比率方程等。。。

學好編程要掌握那些數學知識?

數據結構,線性代數,離散數學,高等數學,要是想深入這也些都是必不可少的

與數學知識有關的小製作

要什麼級別的?幼兒園?還是大學?

編程要用到的數學知識

關鍵看你是要編什麼,如果是游戲,有可能要用到物理,若是牽涉到一些圖像處理,那矩陣理論肯定要知道。網路編程我覺得更需要的是演算法的掌握,比如圖論。總的來講,若是有空了解下數學建模會對你很有幫助。

編程所需的數學知識有哪些

呵呵~~!
知道怎麼統計所需要的數字的公式就行~!
沒有那麼復雜~!
其實大多數的軟體使用者他們的統計方法或學問也不是很高!!
你說對不!!

初中的數學知識點

1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)
(還有一些,大家幫補充吧)
實用工具:常用數學公式
公式分類 公式表達式
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2aosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
(對不起,太多點題目好難找,不過這個網址:czsx../就有初中數學題目大全)

⑥ C語言的學習需要牽扯的數學知識有哪些

C語言用到的數學知識是很橋芹滲廣泛的。我記得我們的老師說過:「如果一個學數學的跟一個學編程的去應聘,受聘的一定是那個學數學的。」所以學好編程的基礎是學好數學,作為ACMer,這里我簡單地說幾個:
1.微積分。這是最基礎的,一定要學好。
2.離散數學,離散數學中有很多東西都需要,當然我在這里不能舉例說明應該學習哪些,因為都很重要。
3.線性代數,線性代數中的矩陣,線性運算等等。
4.幾何計算,不要以為編程只是代數的編程,我們經常也會遇見很多的幾何問題,比如空間運動,求敏脊三維立體圖形的體積等等。
當然,有更多的數學知識是不在書本上的:比如:約瑟夫問題,背包問題,pick定理等等。

如果你想學編程的話,建議你去北大首激OJ平台,或者其他的平台做些題,這樣對你的編程能力有很大的提高的。這是北大OJ平台的網址:
http://poj.org/problemlist

⑦ 學編程需要哪些數學知識

1.學習方法:本人認為這比什麼都重要如果這個沒掌握的話,可能直接影響你的成敗。眾所周知。。計算機知識 尤其是編程涉及到的知識可以說浩如煙海---那麼面對這么多的知識該怎麼去學呢?
---重點:1重實踐,不要去想,把一個知識點完全徹底的掌握,那將是非常恐怖的,有編程經驗的朋友都知道,編程里每個知識點深糾起來的話是非常困難的,更不要說是新手了。。那麼知識點該掌握到什麼程度呢? 個人認為:1-知道它是做什麼 2-知道怎麼使用。 這就足夠了。。。。不要去管他的原理是什麼,能把東西做出來才是王道。。。

---重點:2多寫, 這個在編程界可以說是真理了,真正寫程序的人都知道,一段程序你理解了並不代表你就會寫了,那麼怎麼樣才能提高「寫」的能力呢? 本人認為要注意一下幾點 1- 練習多做是必然的。 2- 做練習時不要因為覺得代碼簡單就只看不敲,哪怕多敲一遍HelloWorld 都是有好處的。 3- 相似的代碼不要復制,我見過很多朋友,遇到兩段程序類似,就懶的敲直接粘貼過去修改。。。請記住這是軟體開發人員的做法,而你不是,目前你還只是一個學習者而已。所以 原則就是 能敲的就不要復制。

---重點:3把精力用在理解上而不要用在背上 寫程序的朋友都知道,函數---關鍵字---常用類什麼的,都非常的熟悉,為什麼我們背過嗎?沒有 寫的多了自然就記的牢了, 所以建議新手不要去死背什麼概念,或語法 一定要理解它的作用。。。

---重點:4 筆記,我認為這點很重要,我自學時全是看書,和視頻教程,然後總結對自己有用的東西。記在本上,而將來如果印象不深刻了由於是自己用自己理解的方式寫的,簡單翻一翻就能回憶起來,而如果,你忘了再去翻視頻 或 翻書的話。。那麼即使你曾經學過,也可能一時想不起來。。。

1.關於數學。。。這個問題,我覺得是目前爭論最多的話題,我見過N多人說 學編程要學XX數學---什麼微積分---什麼離散---嚇的新手連想都不敢想,我只想對這些人說一句,如果你懂,請你們幫助新手,如果你們不懂 請你們閉嘴 謝謝不要 誤人子弟。。。那麼下面我來 具體回答一下數學方面的問題。。。
1- 編程用數學嗎? 用! 回答是肯定的,但要看你是做哪方面的程序。 懂編程的都知道,現在編程基本分B/C構架,即:客戶端/瀏覽器端 與 C/S構架 即:客戶端/伺服器端 前者基本上就是JAVA PHP ASP.NET 等等。。。其中有多少地方用到了數學,如果還堅持沒數學學不了編程的朋友請站出來回答下我的問題。。。

至於C/S 如果不是做系統級的程序員 或 大型3D圖象處理 或者是音頻處理的軟體我請問又有多少地方用到了數學?如果你覺得x/y=z 這也算高等數學的話,我無話可說。。。。總結--除了3D等圖象處理編程 或 音頻處理編程 或系統級編程以外 其他編程對數學要求並不很高。。。。

2.關於英語, 我認為這個是個不可迴避的話題,學編程一點英語不懂我覺得不太現實,畢竟有很多文檔也是用英文寫的,而且程序員都知道,編程時經常要用簡單的英文,哪怕是定義個變數名,也要用英文起名, 沒見過哪個程序員定義的變數叫什麼aaa或bbb的。 那麼新手該怎麼面對英語呢, 我覺得很容易,按照書上或教程上去做就足夠了,1 編寫程序時 按規范要求去做,首先變數名,用見名知意思的英文單詞, 寫注釋時 也用英文短句。。。 拋異常時 也用英文來標注等等。。。。慢慢積累,時間久了你就會發現其實計算機里的英語 就只有那麼幾句而已。。。

3.關於學校 這個我也想提一下,有很多想以程序員為工作的朋友可能都考慮過找個培訓班---但我的建議是。不要去---起碼一般的不要去,為什麼?效果不好,就這么簡單,我親自到XXX著名編程培訓學校試聽過。。。結果很遺憾 一周才那麼幾天課,我3天閱讀的知識點比他們1個興趣 教的還多。。。而且上機和理論還是分開,新學的知識不能立刻上機實踐等等。。我覺得都是很嚴重的弊病。。。跟嚴重的那些所謂的學校給學生們造成了一種假象。。。只要在學校里考試合格了,出去就能做程序員,甚至軟體工程師了。。。最後他們將發現,原來他們在學校里學的 只是基礎中的基礎而已 - -

4. 自學的資料,我個人認為,自學第一重要的是 視頻教程,懂的人都知道,編程學習時重點並不完全是知識點,而是如何運用那些知識點,這也是項目經驗今天被人們這么看中的主要原因。。。所以視頻教程絕對是不二的選擇,現在網上的視頻教程非常之多 各種各樣的都有 具體怎麼找相信不用我教了 google 電驢 迅雷--我就是靠他們活過來的 。。。而且視頻教程還有一點是學校比不了的,那就是 你可以隨時看 重復看,一個知識點沒明白 你可以反復的聽10遍 20遍都沒問題, 學校恐怕就不行了吧。 另一個優點是可以在你狀態好時看, 大家都有狀態不好的時候,累了-困了 很正常,可在學校,誰管你? 老師講完了 聽不懂你自己的問題,而視頻呢,好辦 累了 先休息一會 有精神了 想怎麼看就怎麼看。。。我覺得 找到好的視頻教程。。比任何老師都重要。。至於出現問題不懂怎麼辦? 相信能來到著找到我這篇文章的朋友 都有辦法解決的。。

5.書 --- 我非常喜歡看視頻教程,但我堅決反對只看視頻不看書,為什麼?很簡單視頻傳授的是 寫程序的經驗 而書則是細膩的為你講解其中的原理。。所以我的建議是 先把一個知識的視頻看一遍,然後再把書翻一遍 然後自己再寫2遍 量變必然引起質變 我相信這是放之四海 而皆準的道理(指編程行業)

6.時間+態度 我認為這也很重要,很多人經常這樣問我,我1個月能學會編程么? 我半年能成為編程高手么? 我覺得有這樣心理的人比適合學編程。。。 學編程最忌心浮,一個知識點還沒弄明白 就想寫個項目出來 這是不可能的,這樣最後只能導致你自己喪失信心,編程要一步一步的來,相信我哪怕用一天時間才掌握了一個知識點,起碼比你用一天的時間 看完整本書強。。因為前者起碼你還是有點收獲的(指新手,老手兩天一本書很正常有經驗了嗎 - -) 這里我可以給大家一我的學習時間大家可做為參考。。。我是從0基礎開始一直到現在掌握j2ee基本所有的基礎開發技能 用時一年半,本人覺得不算慢 每天最少看書+練習5小時 每天不停這個是我的進度。
此文獻給想學編程卻又礙於各個方面左右不定的人,和正在學的初學者!

參考文獻:http://hi..com/vigorlin/profile!

⑧ 學編程需要精通數學中的哪些知識

我來說兩句,第一,程序其實就是一道一道的數學題,當然,如果你搞的是普通的WEB開發什麼的,這些東西都不重要,但是做大型軟體和搞科學研究的話,演算法對一個程序來說至關重要,舉個粒子,對20萬個數據進行排序,不同的排序演算法的運行時間是不一樣的,用最垃圾的演算法可能要跑上好幾天才能算出來,用好的演算法可能幾分鍾就能搞定,而演算法的研究是要有著深厚的數學基礎的。
第二,講一講應該學哪些數學知識,我是大學生,所以就從大學的角度來講吧,首先大學里的基礎課程高等數學是必須的,這可能對於你寫演算法來說沒有什麼太直接的關系,但是,你要記住,高等數學是最基本的東西,裡面的很多概念性的東西都是編寫程序相關的,是你學其他幾門數學課程的基礎。第二,線性代數,這們課在工科專業一般都開,很重要,尤其講到的舉矩陣、集合等等,是你以後在程序開發中能直接用到的,而且,線性代數里一些問題的解決方式能很大程度地活躍你的思維。第三,離散數學,離散數學是計算機和軟體工程專業必學的課程,和計算機程序直接相關,舉例來說,你在設計一條資料庫的SQL語句進行聯表查詢, 你可以直接寫上一大串來實現你的查詢,但如果你能用離散數學里學到的邏輯推理和範式對你的SQL語句進行簡化,那麼你的SQL語句查詢速度可能會有上百倍的提升。
第四,有興趣可以學一學組合數學,我也正在看這方面的書,這是研究生的課程之一,但提前學一學還是很有好處的,裡面很多結論、推理都會讓你受益非淺,學好了這門數學,你的程序質量將上升到另外一個高度。
就說這些吧,總之,學軟體開發的人必須要學數學,不但要學,還要學很多。
很多人都在說中國程序員30以後就幹不了了,為什麼,不是幹不了,是干不動了,因為太多的新東西要學,而且學著很費力,為什麼,因為基礎不好,所以學什麼都不行,我想提高自己的數學素質一定會改變這一現狀。
不說了,接分!

⑨ 學編程要運用什麼知識

1、英語基礎想學編程,有點英語基礎會比較好,現在大部分編程語言是基於英語語言的,比如常見的C、C++、java等等都是英語單詞堆起來的,所以最好有英語基礎,這樣學習編程輕松、高效一些。當然不要求英語水平有多高,畢竟學軟體開發的過程中所接觸的英語的單詞也就400來個,記住單詞就好,不需要語法和時態。2、數學基礎因為大多編程都涉及了基本的算術運算,但可能你想要學習更先進的概念。如果你想寫出復雜的模擬或者演算法級別程序,這將是非常重要的。對於大多數日常編程而言,你並不需要太多先進的數學知識

⑩ 學編程需要什麼基礎知識

學編程需要以下基礎知識:

1、數學基礎。從計算機發展和應用的歷史來看,計算機的數學模型和體系結構等都是有數學家提出的,最早的計算機也是為數值計算而設計的。因此,要學好計算機就要有一定的數學基礎,初學者有高中水平就差不多了。
2、邏輯思維能力的培養。學程序設計要有一定的邏輯思維能力,邏輯思維能力的培養要長時間的實踐鍛煉。要想成為一名優秀的程序員,最重要的是掌握編程思想。要做到這一點必須在反復的實踐、觀察、分析、比較、總結中逐漸地積累。
3、要有一定的編程思想。學習一門語言或開發工具,語法結構、功能調用是次要的,最主要是學習它的思想。
學會編程語言,可以從事軟體工程師,就目前而言,軟體工程師就業前景一片大好,我國仍然還存在很大的軟體開發人才缺口,並且以每年20%左右的速度增長。編程語言發展前景如此好,已經成為多數同學心中理想的職業。

想了解更多有關學習編程的詳情,推薦咨詢達內教育。達內教育是引領行業的職業教育公司,致力於面向IT互聯網行業,培養軟體開發工程師、系統管理員、UI設計師、網路營銷工程師、會計等職場人才,擁有強大的師資力量,實戰講師對實戰經驗傾囊相授,部分講師曾就職於IBM、微軟、Oracle-Sun、華為、亞信等企業,其教研團隊更是有獨家26大課程體系,助力學生系統化學習,同時還與各大高校進行合作,助力學生職業方向的發展。
感興趣的話點擊此處,免費學習一下

閱讀全文

與學編程要用到哪些數學知識相關的資料

熱點內容
ls可編程式控制制器如何使用 瀏覽:388
擴展名為的文件是視頻文件 瀏覽:761
如何安裝my配置文件 瀏覽:324
卡死安卓機代碼 瀏覽:127
mt4畫的線屬於什麼文件 瀏覽:568
輸入文件格式 瀏覽:103
織夢網站一排4張圖片 瀏覽:301
樂1s可以升級到全網通嗎 瀏覽:484
QQ瀏覽器保留密碼mac 瀏覽:761
一台電腦如何共享文件夾 瀏覽:942
wps如何保存pdf文件 瀏覽:602
PS源文件是厘米 瀏覽:766
創建桌面文件夾路徑 瀏覽:900
華為手機app應用數據哪些刪除 瀏覽:765
資料庫有哪些表格 瀏覽:741
bada12微信java 瀏覽:16
小白編程什麼最好學 瀏覽:205
qq回頭看頭像 瀏覽:338
蘋果換屏要多長時間 瀏覽:283
如何用平板電腦學編程 瀏覽:424

友情鏈接