1. [編程]關於匯編語言的負數的表示以及運算
數在計算機中是以二進制形式表示的。
數分為有符號數和無符號數。
原碼、反碼、補碼都是有符號定點數的表示方法。
一個有符號定點數的最高位為符號位,0是正,1是副。
以下都以8位整數為例,
原碼就是這個數本身的二進制形式。
例如
0000001 就是+1
1000001 就是-1
正數的反碼和補碼都是和原碼相同。
負數的反碼是將其原碼除符號位之外的各位求反
[-3]反=[10000011]反=11111100
負數的補碼是將其原碼除符號位之外的各位求反之後在末位再加1。
[-3]補=[10000011]補=11111101
一個數和它的補碼是可逆的。
為什麼要設立補碼呢?
第一是為了能讓計算機執行減法:
[a-b]補=a補+(-b)補
第二個原因是為了統一正0和負0
正零:00000000
負零:10000000
這兩個數其實都是0,但他們的原碼卻有不同的表示。
但是他們的補碼是一樣的,都是00000000
特別注意,如果+1之後有進位的,要一直往前進位,包括符號位!(這和反碼是不同的!)
[10000000]補
=[10000000]反+1
=11111111+1
=(1)00000000
=00000000(最高位溢出了,符號位變成了0)
有人會問
10000000這個補碼表示的哪個數的補碼呢?
其實這是一個規定,這個數表示的是-128
所以n位補碼能表示的范圍是
-2^(n-1)到2^(n-1)-1
比n位原碼能表示的數多一個
又例:
1011
原碼:01011
反碼:01011 //正數時,反碼=原碼
補碼:01011 //正數時,補碼=原碼
-1011
原碼:11011
反碼:10100 //負數時,反碼為原碼取反
補碼:10101 //負數時,補碼為原碼取反+1
0.1101
原碼:0.1101
反碼:0.1101 //正數時,反碼=原碼
補碼:0.1101 //正數時,補碼=原碼
-0.1101
原碼:1.1101
反碼:1.0010 //負數時,反碼為原碼取反
補碼:1.0011 //負數時,補碼為原碼取反+1
總結:
在計算機內,定點數有3種表示法:原碼、反碼和補碼
所謂原碼就是前面所介紹的二進制定點表示法,即最高位為符號位,「0」表示正,「1」表示負,其餘位表示數值的大小。
反碼表示法規定:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。
補碼表示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。
1、原碼、反碼和補碼的表示方法
(1) 原碼:在數值前直接加一符號位的表示法。
例如: 符號位 數值位
[+7]原= 0 0000111 B
[-7]原= 1 0000111 B
注意:a. 數0的原碼有兩種形式:
[+0]原=00000000B [-0]原=10000000B
b. 8位二進制原碼的表示範圍:-127~+127
2)反碼:
正數:正數的反碼與原碼相同。
負數:負數的反碼,符號位為「1」,數值部分按位取反。
例如: 符號位 數值位
[+7]反= 0 0000111 B
[-7]反= 1 1111000 B
注意:a. 數0的反碼也有兩種形式,即
[+0]反=00000000B
[- 0]反=11111111B
b. 8位二進制反碼的表示範圍:-127~+127
3)補碼的表示方法
1)模的概念:把一個計量單位稱之為模或模數。例如,時鍾是以12進制進行計數循環的,即以12為模。在時鍾上,時針加上(正撥)12的整數位或減 去(反撥)12的整數位,時針的位置不變。14點鍾在捨去模12後,成為(下午)2點鍾(14=14-12=2)。從0點出發逆時針撥10格即減去10小 時,也可看成從0點出發順時針撥2格(加上2小時),即2點(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射為+2。由此 可見,對於一個模數為12的循環系統來說,加2和減10的效果是一樣的;因此,在以12為模的系統中,凡是減10的運算都可以用加2來代替,這就把減法問 題轉化成加法問題了(註:計算機的硬體結構中只有加法器,所以大部分的運算都必須最終轉換為加法)。10和2對模12而言互為補數。
同理,計算機的運算部件與寄存器都有一定字長的限制(假設字長為8),因此它的運算也是一種模運算。當計數器計滿8位也就是256個數後會產生溢 出,又從頭開始計數。產生溢出的量就是計數器的模,顯然,8位二進制數,它的模數為28=256。在計算中,兩個互補的數稱為「補碼」。
2)補碼的表示: 正數:正數的補碼和原碼相同。
負數:負數的補碼則是符號位為「1」,數值部分按位取反後再在末位(最低位)加1。也就是「反碼+1」。
例如: 符號位 數值位
[+7]補= 0 0000111 B
[-7]補= 1 1111001 B
補碼在微型機中是一種重要的編碼形式,請注意:
a.採用補碼後,可以方便地將減法運算轉化成加法運算,運算過程得到簡化。正數的補碼即是它所表示的數的真值,而負數的補碼的數值部份卻不是它所表示的數的真值。採用補碼進行運算,所得結果仍為補碼。
b.與原碼、反碼不同,數值0的補碼只有一個,即 [0]補=00000000B。
c.若字長為8位,則補碼所表示的范圍為-128~+127;進行補碼運算時,應注意所得結果不應超過補碼所能表示數的范圍。
2. 線切割編程軟體YH中 M Z α 分別指什麼齒輪怎麼樣畫出來啊希望好心人幫幫我!
m模數z齒數a壓力角。割齒輪直接進入數控程序-----齒輪加工----輸入你知道的參數就行了
3. 一個c語言小問題,編寫程序
按照題目要求編寫的C語言程序如下(見圖)
4. C語言編程之二進制原碼、反碼和補碼
概述
在計算機內,有符號數有3種表示法:原碼、反碼和補碼。
在計算機中,數據是以補碼的形式存儲的,所以補碼在c語言的教學中有比較重要的地位,而講解補碼必須涉及到原碼、反碼。
詳細釋義
所謂原碼就是二進制定點表示法,即最高位為符號位,「0」表示正,「1」表示負,其餘位表示數值的大小。
反碼表示法規定:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。
補碼表示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。
原碼、反碼和補碼的表示方法
定點整數表示法
定點小數小時法
反碼
正數:正數的反碼與原碼相同。
負數:負數的反碼,符號位為「1」,數值部分按位取反。
例如: 符號位 數值位
[+7]反= 0 0000111 B
[-7]反= 1 1111000 B
注意:
a. 數0的反碼也有兩種形式,即
[+0]反=00000000B
[- 0]反=11111111B
b. 8位二進制反碼的表示範圍:-127~+127
原碼
在數值前直接加一符號位的表示法。
例如: 符號位 數值位
[+7]原= 0 0000111 B
[-7]原= 1 0000111 B
注意:
數0的原碼有兩種形式:
[+0]原= 00000000B
[-0]原= 10000000B
位二進制原碼的表示範圍:-127~+127
補碼
1)模的概念:把一個計量單位稱之為模或模數。
例如,時鍾是以12進制進行計數循環的,即以12為模。在時鍾上,時針加上(正撥)12的整數位或減去(反撥)12的整數位,時針的位置不變。
對於一個模數為12的循環系統來說,加2和減10的效果是一樣的;因此,在以12為模的系統中,凡是減10的運算都可以用加2來代替,這就把減法問題轉化成加法問題了(註:計算機的硬體結構中只有加法器,所以大部分的運算都必須最終轉換為加法)。
10和2對模12而言互為補數。
同理,計算機的運算部件與寄存器都有一定字長的限制(假設字長為8),因此它的運算也是一種模運算。當計數器計滿8位也就是256個數後會產生溢出,又從頭開始計數。產生溢出的量就是計數器的模,顯然,8位二進制數,它的模數為2^8=256。在計算中,兩個互補的數稱為「補碼」。
2)補碼的表示:
正數:正數的補碼和原碼相同。
負數:負數的補碼則是符號位為「1」。並且,這個「1」既是符號位,也是數值位。數值部分按位取反後再在末位(最低位)加1。也就是「反碼+1」。
例如: 符號位 數值位
[+7]補= 0 0000111 B
[-7]補= 1 1111001 B
補碼在微型機中是一種重要的編碼形式,請注意:
a. 採用補碼後,可以方便地將減法運算轉化成加法運算,運算過程得到簡化。
正數的補碼即是它所表示的數的真值,而負數的補碼的數值部份卻不是它所表示的數的真值。
採用補碼進行運算,所得結果仍為補碼。
b. 與原碼、反碼不同,數值0的補碼只有一個,即
[0]補=00000000B。
若字長為8位,則補碼所表示的范圍為-128~+127;進行補碼運算時,應注意所得結果不應超過補碼所能表示數的范圍。
原碼、反碼和補碼之間的轉換
由於正數的原碼、補碼、反碼表示方法均相同,不需轉換。
在此,僅以負數情況分析。
(1) 已知原碼,求補碼。
例:已知某數X的原碼為10110100B,試求X的補碼和反碼
解:由[X]原=10110100B知,X為負數。求其反碼時,符號位不變,數值部分按位求反;求其補碼時,再在其反碼的末位加1。
1 0 1 1 0 1 0 0 原碼
1 1 0 0 1 0 1 1 反碼,符號位不變,數值位取反
1 1 0 0 1 1 0 0 補碼,符號位不變,數值位取反+1
故:[X]補=11001100B,[X]反=11001011B。
(2) 已知補碼,求原碼。
分析:按照求負數補碼的逆過程,數值部分應是最低位減1,然後取反。但是對二進制數來說,先減1後取反和先取反後加1得到的結果是一樣的,故仍可採用取反加1 有方法。
例:已知某數X的補碼11101110B,試求其原碼。
解:由[X]補=11101110B知,X為負數。
1 1 1 0 1 1 1 0 補碼
1 1 1 0 1 1 0 1 反碼(符號位不變,數值位取反加1)
1 0 0 1 0 0 1 0 原碼(符號位不變,數值位取反)
關於補碼的補充例子:
一個正的整數的補碼就是這個整數變成二進制的值。
舉例:一個int型變數i=10,其二進制補碼就是0000 0000 0000 0000 0000 0000 0000 1010(0x0000000A)
2. 一個負整數的二進制補碼,就是該負數的絕對值所對應的補碼全部取反後加1.
舉例:int i=-10的補碼如何求得:
先求-10的絕對值10的補碼是0000 0000 0000 0000 0000 0000 0000 1010(0x0000000A);
再將求得的補碼取反: 1111 1111 1111 1111 1111 1111 1111 0101
再將取反後得到的補碼加1: 1111 1111 1111 1111 1111 1111 1111 0101 + 1
即可得到-10的二進制補碼: 1111 1111 1111 1111 1111 1111 1111 0110(0xFFFFFFF6)
3. +0和-0的二進制補碼都是0
首先+0的二進制補碼是0;
-0的二進制補碼是+0的二進制補碼取反後加1,+0的二進制補碼為0,取反後為FFFFFFFF,加1後還是0
原碼和反碼在數值0都有二意,唯有補碼在數值0是唯一的碼值!
5. 數控車床模數螺紋怎麼編程 比如模數是1.25的編程時候怎麼編。。 大俠幫忙
G92 X Z F1.25
6. 數控程序中R1代表模數R2代表齒數R3.R4.R5代表什麼
這應該是某西門子系統宏程序代碼。既然是宏程序,R?代表什麼,完全由程序編寫人員決定,不同程序中含義完全不同,完成同樣的工作的程序,不同人寫出來,變數含義也很可能完全不同。R2.3.4.5代表什麼,要麼你自己讀程序分析,要麼你問編程的人。如果看不懂,那就沒轍了。宏程序的編寫本來就比較考研編程人員的能力,從來沒有哪裡把這東西當做學編程的必修課來對待——會固然好,不會,也不影響作為合格的工人(當然對專業技術人員來說,必須掌握)