㈠ 資料庫主機 與 磁碟陣列 是什麼關系
一個是計算的核心,一個是存儲的核心。
就好比是電腦和移動硬碟的關系一樣。專
一般資料庫主機就屬是一台伺服器,可以是x86架構的PC伺服器,也可以是solaris或者aix那樣的小型機。一般這種伺服器都是配磁碟存儲的,可能是幾百GB的容量。
當資料庫需要存儲海量的數據,如上百TB級別的數據,伺服器自帶的磁碟容量就不夠了,需要進行擴充。這樣磁碟陣列就出場了。磁碟陣列可以將幾塊、幾十塊,乃至上百塊磁碟組合起來,容量十分的巨大(價格也不菲),將所有的數據都存儲在磁碟陣列中,通過光纖連接到資料庫主機。提高了存儲容量。
㈡ 一個資料庫是不是就是硬碟上的一個區域
能夠進行自動查詢和修改的數據集。資料庫有很多種類型,從最簡單的存儲有各種數據的表格到能夠進行海量數據存儲的大型資料庫系統.
你的一個手機上的通訊錄,你也可以把它視為資料庫。
你的硬碟上存儲的數據可以稱為資料庫,但是它倆是不能劃等號的,你舉得這個例子:資料庫跟硬碟它倆不是相等的,它倆是從屬的關系。
如果你想更好的理解一下的話你可以看看這個鏈接:http://ke..com/view/1088.htm
定義1
當人們從不同的角度來描述這一概念時就有不同的定義(當然是描述性的)。例如,稱資料庫是一個「記錄保存系統」(該定義強調了資料庫是若干記錄的集合)。又如稱資料庫是「人們為解決特定的任務,以一定的組織方式存儲在一起的相關的數據的集合」(該定義側重於數據的組織)。更有甚者稱資料庫是「一個數據倉庫」。當然,這種說法雖然形象,但並不嚴謹。
嚴格地說,資料庫是「按照數據結構來組織、存儲和管理數據的倉庫」。在經濟管理的日常工作中,常常需要把某些相關的數據放進這樣的「倉庫」,並根據管理的需要進行相應的處理。例如,企業或事業單位的人事部門常常要把本單位職工的基本情況(職工號、姓名、年齡、性別、籍貫、工資、簡歷等)存放在表中,這張表就可以看成是一個資料庫。有了這個"數據倉庫"我們就可以根據需要隨時查詢某職工的基本情況,也可以查詢工資在某個范圍內的職工人數等等。這些工作如果都能在計算機上自動進行,那我們的人事管理就可以達到極高的水平。此外,在財務管理、倉庫管理、生產管理中也需要建立眾多的這種"資料庫",使其可以利用計算機實現財務、倉庫、生產的自動化管理。
J.Martin給資料庫下了一個比較完整的定義:資料庫是存儲在一起的相關數據的集合,這些數據是結構化的,無有害的或不必要的冗餘,並為多種應用服務;數據的存儲獨立於使用它的程序;對資料庫插入新數據,修改和檢索原有數據均能按一種公用的和可控制的方式進行。當某個系統中存在結構上完全分開的若干個資料庫時,則該系統包含一個「資料庫集合」。
定義2
資料庫是依照某種數據模型組織起來並存放二級存儲器中的數據集合。這種數據集合具有如下特點:盡可能不重復,以最優方式為某個特定組織的多種應用服務,其數據結構獨立於使用它的應用程序,對數據的增、刪、改和檢索由統一軟體進行管理和控制。從發展的歷史看,資料庫是數據管理的高級階段,它是由文件管理系統發展起來的。
定義3
(伯爾尼公約議定書專家委員會的觀點)
所有的信息(數據率檔?的編纂物,不論其是以印刷形式,計算機存儲單元形式,還是其它形式存在,都應視為「資料庫」。
數字化內容選擇的原因有很多,概括起來主要有:
(1)存儲空間的原因。數字化的產品是通過網路被廣大用戶存取利用,而大家都知道數字化產品是存放在磁碟陣列上的,磁碟陣列由伺服器來管理,磁碟空間是有限的,伺服器的能力也是有限的,不可能無限量地存入數字資源,這就需要我們對文獻資源數字化內容進行選擇。
(2)解決數字化生產高成本和圖書館經費有限性之間矛盾的需要。幾乎沒有圖書館有充足的資源來對整個館藏進行數字化,內容選擇不可避免。
(3)數字資源管理的需要。技術的快速發展使數字化項目所生成的數字資源的生命周期越來越短,投入巨資進行數字遷移是延長數字資源生命的1個重要途徑,昂貴的維護成本就必須考慮數字化的內容選擇。
資料庫發展史資料庫技術從誕生到現在,在不到半個世紀的時間里,形成了堅實的理論基礎、成熟的商業產品和廣泛的應用領域,吸引越來越多的研究者加入。資料庫的誕生和發展給計算機信息管理帶來了一場巨大的革命。三十多年來,國內外已經開發建設了成千上萬個資料庫,它已成為企業、部門乃至個人日常工作、生產和生活的基礎設施。同時,隨著應用的擴展與深入,資料庫的數量和規模越來越大,資料庫的研究領域也已經大大地拓廣和深化了。30年間資料庫領域獲得了三次計算機圖靈獎(C.W. Bachman,E.F.Codd, J.Gray),更加充分地說明了資料庫是一個充滿活力和創新精神的領域。就讓我們沿著歷史的軌跡,追溯一下資料庫的發展歷程。
傳統上,為了確保企業持續擴大的IT系統穩定運行,一般用戶信息中心往往不僅要不斷更新更大容量的IT運維軟硬體設備,極大浪費企業資源;更要長期維持一支由資料庫維護、伺服器維護、機房值班等各種維護人員組成的運維大軍,維護成本也隨之節節高升。為此,企業IT決策者開始思考:能不能像擰水龍頭一樣按需調節的使用IT運維服務?而不是不斷增加已經價格不菲的運維成本。
㈢ 磁碟讀寫和資料庫讀寫哪個效率更高
假定在程序效率和關鍵過程相當且不計入緩存等措施的條件下,讀寫任何類型的數據都沒有直接操作文件來的快,不論MSYQL過程如何,最後都要到磁碟上去讀這個「文件」(記錄存儲區等效),所以當然這一切的前提是只讀 內容,無關任何排序或查找操作。
動態網站一般都是用資料庫來存儲信息,如果信息的及時性要求不高 可以加入緩存來減少頻繁讀寫資料庫。
兩種方式一般都支持,但是繞過操作系統直接操作磁碟的性能較高,而且安全性也較高,資料庫系中的磁碟性能一直都是瓶頸,大型資料庫一般基於unix
系統,當然win下也有,不常用應為win的不可靠性,unix下,用的是裸設備raw設備,就是沒有加工過的設備(unix下的磁碟分區屬於特殊設備,
以文件形式統一管理),由dbms直接管理,不通過操作系統,效率很高,可靠性也高,因為磁碟,cache和內存都是自己管理的,大型資料庫系統
db2,oracal,informix(不太流行了),mssql算不上大型資料庫系統。
1、直接讀文件相比資料庫查詢效率更勝一籌,而且文中還沒算上連接和斷開的時間。
2、一次讀取的內容越大,直接讀文件的優勢會越明
顯(讀文件時間都是小幅增長,這跟文件存儲的連續性和簇大小等有關系),這個結果恰恰跟書生預料的相反,說明MYSQL對更大文件讀取可能又附加了某些操
作(兩次時間增長了近30%),如果只是單純的賦值轉換應該是差異偏小才對。
3、寫文件和INSERT幾乎不用測試就可以推測出,資料庫效率只會更差。
4、很小的配置文件如果不需要使用到資料庫特性,更加適合放到獨立文件里存取,無需單獨創建數據表或記錄,很大的文件比如圖片、音樂等採用文件存儲更為方便,只把路徑或縮略圖等索引信息放到資料庫里更合理一些。
5、PHP上如果只是讀文件,file_get_contents比fopen、fclose更有效率,不包括判斷存在這個函數時間會少3秒左右。
6、fetch_row和fetch_object應該是從fetch_array轉換而來的,書生沒看過PHP的源碼,單從執行上就可以說明fetch_array效率更高,這跟網上的說法似乎相反。
磁碟讀寫與資料庫的關系:
一 磁碟物理結構
(1) 碟片:硬碟的盤體由多個碟片疊在一起構成。
在硬碟出廠時,由硬碟生產商完成了低級格式化(物理格式化),作用是將空白的碟片(Platter)劃分為一個個同圓心、不同半徑的磁軌
(Track),還將磁軌劃分為若干個扇區(Sector),每個扇區可存儲128×2的N次方(N=0.1.2.3)位元組信息,默認每個扇區的大小為
512位元組。通常使用者無需再進行低級格式化操作。
(2) 磁頭:每張碟片的正反兩面各有一個磁頭。
(3) 主軸:所有磁片都由主軸電機帶動旋轉。
(4) 控制集成電路板:復雜!上面還有ROM(內有軟體系統)、Cache等。
二 磁碟如何完成單次IO操作
(1) 尋道
當控制器對磁碟發出一個IO操作命令的時候,磁碟的驅動臂(Actuator
Arm)帶動磁頭(Head)離開著陸區(Landing
Zone,位於內圈沒有數據的區域),移動到要操作的初始數據塊所在的磁軌(Track)的正上方,這個過程被稱為尋道(Seeking),對應消耗的時
間被稱為尋道時間(Seek Time);
(2) 旋轉延遲
找到對應磁軌還不能馬上讀取數據,這時候磁頭要等到磁碟碟片(Platter)旋轉到初始數據塊所在的扇區(Sector)落在讀寫磁頭正下方之後才能開始讀取數據,在這個等待碟片旋轉到可操作扇區的過程中消耗的時間稱為旋轉延時(Rotational Delay);
(3) 數據傳送
接下來就隨著碟片的旋轉,磁頭不斷的讀/寫相應的數據塊,直到完成這次IO所需要操作的全部數據,這個過程稱為數據傳送(Data Transfer),對應的時間稱為傳送時間(Transfer Time)。完成這三個步驟之後單次IO操作也就完成了。
根據磁碟單次IO操作的過程,可以發現:
單次IO時間 = 尋道時間 + 旋轉延遲 + 傳送時間
進而推算IOPS(IO per second)的公式為:
IOPS = 1000ms/單次IO時間
三 磁碟IOPS計算
不同磁碟,它的尋道時間,旋轉延遲,數據傳送所需的時間各是多少?
1. 尋道時間
考慮到被讀寫的數據可能在磁碟的任意一個磁軌,既有可能在磁碟的最內圈(尋道時間最短),也可能在磁碟的最外圈(尋道時間最長),所以在計算中我們只考慮平均尋道時間。
在購買磁碟時,該參數都有標明,目前的SATA/SAS磁碟,按轉速不同,尋道時間不同,不過通常都在10ms以下:
3. 傳送時間2. 旋轉延時
和尋道一樣,當磁頭定位到磁軌之後有可能正好在要讀寫扇區之上,這時候是不需要額外的延時就可以立刻讀寫到數據,但是最壞的情況確實要磁碟旋轉整整
一圈之後磁頭才能讀取到數據,所以這里也考慮的是平均旋轉延時,對於15000rpm的磁碟就是(60s/15000)*(1/2) = 2ms。
(1) 磁碟傳輸速率
磁碟傳輸速率分兩種:內部傳輸速率(Internal Transfer Rate),外部傳輸速率(External Transfer Rate)。
內部傳輸速率(Internal Transfer Rate),是指磁頭與硬碟緩存之間的數據傳輸速率,簡單的說就是硬碟磁頭將數據從碟片上讀取出來,然後存儲在緩存內的速度。
理想的內部傳輸速率不存在尋道,旋轉延時,就一直在同一個磁軌上讀數據並傳到緩存,顯然這是不可能的,因為單個磁軌的存儲空間是有限的;
實際的內部傳輸速率包含了尋道和旋轉延時,目前家用磁碟,穩定的內部傳輸速率一般在30MB/s到45MB/s之間(伺服器磁碟,應該會更高)。
外部傳輸速率(External Transfer Rate),是指硬碟緩存和系統匯流排之間的數據傳輸速率,也就是計算機通過硬碟介面從緩存中將數據讀出交給相應的硬碟控制器的速率。
硬碟廠商在硬碟參數中,通常也會給出一個最大傳輸速率,比如現在SATA3.0的6Gbit/s,換算一下就是6*1024/8,768MB/s,通常指的是硬碟介面對外的最大傳輸速率,當然實際使用中是達不到這個值的。
這里計算IOPS,保守選擇實際內部傳輸速率,以40M/s為例。
(2) 單次IO操作的大小
有了傳送速率,還要知道單次IO操作的大小(IO Chunk Size),才可以算出單次IO的傳送時間。那麼磁碟單次IO的大小是多少?答案是:不確定。
操作系統為了提高 IO的性能而引入了文件系統緩存(File System Cache),系統會根據請求數據的情況將多個來自IO的請求先放在緩存裡面,然後再一次性的提交給磁碟,也就是說對於資料庫發出的多個8K數據塊的讀操作有可能放在一個磁碟讀IO里就處理了。
還有,有些存儲系統也是提供了緩存(Cache),接收到操作系統的IO請求之後也是會將多個操作系統的 IO請求合並成一個來處理。
不管是操作系統層面的緩存還是磁碟控制器層面的緩存,目的都只有一個,提高數據讀寫的效率。因此每次單獨的IO操作大小都是不一樣的,它主要取決於系統對於數據讀寫效率的判斷。這里以SQL Server資料庫的數據頁大小為例:8K。
(3) 傳送時間
傳送時間 = IO Chunk Size/Internal Transfer Rate = 8k/40M/s = 0.2ms
可以發現:
(3.1) 如果IO Chunk Size大的話,傳送時間會變大,從而導致IOPS變小;
(3.2) 機械磁碟的主要讀寫成本,都花在了定址時間上,即:尋道時間 + 旋轉延遲,也就是磁碟臂的擺動,和磁碟的旋轉延遲。
(3.3) 如果粗略的計算IOPS,可以忽略傳送時間,1000ms/(尋道時間 + 旋轉延遲)即可。
4. IOPS計算示例
以15000rpm為例:
(1) 單次IO時間
單次IO時間 = 尋道時間 + 旋轉延遲 + 傳送時間 = 3ms + 2ms + 0.2 ms = 5.2 ms
(2) IOPS
IOPS = 1000ms/單次IO時間 = 1000ms/5.2ms = 192 (次)
這里計算的是單塊磁碟的隨機訪問IOPS。
考慮一種極端的情況,如果磁碟全部為順序訪問,那麼就可以忽略:尋道時間 + 旋轉延遲 的時長,IOPS的計算公式就變為:IOPS = 1000ms/傳送時間
IOPS = 1000ms/傳送時間= 1000ms/0.2ms = 5000 (次)
顯然這種極端的情況太過理想,畢竟每個磁軌的空間是有限的,尋道時間 + 旋轉延遲 時長確實可以減少,不過是無法完全避免的。
四 資料庫中的磁碟讀寫
1. 隨機訪問和連續訪問
(1) 隨機訪問(Random Access)
指的是本次IO所給出的扇區地址和上次IO給出扇區地址相差比較大,這樣的話磁頭在兩次IO操作之間需要作比較大的移動動作才能重新開始讀/寫數據。
(2) 連續訪問(Sequential Access)
相反的,如果當次IO給出的扇區地址與上次IO結束的扇區地址一致或者是接近的話,那磁頭就能很快的開始這次IO操作,這樣的多個IO操作稱為連續訪問。
(3) 以SQL Server資料庫為例
數據文件,SQL Server統一區上的對象,是以extent(8*8k)為單位進行空間分配的,數據存放是很隨機的,哪個數據頁有空間,就寫在哪裡,除非通過文件組給每個表預分配足夠大的、單獨使用的文件,否則不能保證數據的連續性,通常為隨機訪問。
另外哪怕聚集索引表,也只是邏輯上的連續,並不是物理上。
日誌文件,由於有VLF的存在,日誌的讀寫理論上為連續訪問,但如果日誌文件設置為自動增長,且增量不大,VLF就會很多很小,那麼就也並不是嚴格的連續訪問了。
2. 順序IO和並發IO
(1) 順序IO模式(Queue Mode)
磁碟控制器可能會一次對磁碟組發出一連串的IO命令,如果磁碟組一次只能執行一個IO命令,稱為順序IO;
(2) 並發IO模式(Burst Mode)
當磁碟組能同時執行多個IO命令時,稱為並發IO。並發IO只能發生在由多個磁碟組成的磁碟組上,單塊磁碟只能一次處理一個IO命令。
(3) 以SQL Server資料庫為例
有的時候,盡管磁碟的IOPS(Disk Transfers/sec)還沒有太大,但是發現資料庫出現IO等待,為什麼?通常是因為有了磁碟請求隊列,有過多的IO請求堆積。
磁碟的請求隊列和繁忙程度,通過以下性能計數器查看:
LogicalDisk/Avg.Disk Queue Length
LogicalDisk/Current Disk Queue Length
LogicalDisk/%Disk Time
這種情況下,可以做的是:
(1) 簡化業務邏輯,減少IO請求數;
(2) 同一個實例下,多個資料庫遷移的不同實例下;
(3) 同一個資料庫的日誌,數據文件分離到不同的存儲單元;
(4) 藉助HA策略,做讀寫操作的分離。
3. IOPS和吞吐量(throughput)
(1) IOPS
IOPS即每秒進行讀寫(I/O)操作的次數。在計算傳送時間時,有提到,如果IO Chunk Size大的話,那麼IOPS會變小,假設以100M為單位讀寫數據,那麼IOPS就會很小。
(2) 吞吐量(throughput)
吞吐量指每秒可以讀寫的位元組數。同樣假設以100M為單位讀寫數據,盡管IOPS很小,但是每秒讀寫了N*100M的數據,吞吐量並不小。
(3) 以SQL Server資料庫為例
對於OLTP的系統,經常讀寫小塊數據,多為隨機訪問,用IOPS來衡量讀寫性能;
對於數據倉庫,日誌文件,經常讀寫大塊數據,多為順序訪問,用吞吐量來衡量讀寫性能。
磁碟當前的IOPS,通過以下性能計數器查看:
LogicalDisk/Disk Transfers/sec
LogicalDisk/Disk Reads/sec
LogicalDisk/Disk Writes/sec
磁碟當前的吞吐量,通過以下性能計數器查看:
LogicalDisk/Disk Bytes/sec
LogicalDisk/Disk Read Bytes/sec
LogicalDisk/Disk Write Bytes/sec
㈣ 資料庫和硬碟的區別是什麼
這兩樣沒有可比性,硬碟是一種存儲數據的硬體設備,而資料庫指的是按一定結構組織在一起的數據集合,資料庫一般存儲在硬碟上,由資料庫管理系統軟體進行管理和維護。