導航:首頁 > 編程大全 > bp神經網路識別英文大寫字母

bp神經網路識別英文大寫字母

發布時間:2023-10-14 14:25:50

① 神經網路BP模型

一、BP模型概述

誤差逆傳播(Error Back-Propagation)神經網路模型簡稱為BP(Back-Propagation)網路模型。

Pall Werbas博士於1974年在他的博士論文中提出了誤差逆傳播學習演算法。完整提出並被廣泛接受誤差逆傳播學習演算法的是以Rumelhart和McCelland為首的科學家小組。他們在1986年出版「Parallel Distributed Processing,Explorations in the Microstructure of Cognition」(《並行分布信息處理》)一書中,對誤差逆傳播學習演算法進行了詳盡的分析與介紹,並對這一演算法的潛在能力進行了深入探討。

BP網路是一種具有3層或3層以上的階層型神經網路。上、下層之間各神經元實現全連接,即下層的每一個神經元與上層的每一個神經元都實現權連接,而每一層各神經元之間無連接。網路按有教師示教的方式進行學習,當一對學習模式提供給網路後,神經元的激活值從輸入層經各隱含層向輸出層傳播,在輸出層的各神經元獲得網路的輸入響應。在這之後,按減小期望輸出與實際輸出的誤差的方向,從輸入層經各隱含層逐層修正各連接權,最後回到輸入層,故得名「誤差逆傳播學習演算法」。隨著這種誤差逆傳播修正的不斷進行,網路對輸入模式響應的正確率也不斷提高。

BP網路主要應用於以下幾個方面:

1)函數逼近:用輸入模式與相應的期望輸出模式學習一個網路逼近一個函數;

2)模式識別:用一個特定的期望輸出模式將它與輸入模式聯系起來;

3)分類:把輸入模式以所定義的合適方式進行分類;

4)數據壓縮:減少輸出矢量的維數以便於傳輸或存儲。

在人工神經網路的實際應用中,80%~90%的人工神經網路模型採用BP網路或它的變化形式,它也是前向網路的核心部分,體現了人工神經網路最精華的部分。

二、BP模型原理

下面以三層BP網路為例,說明學習和應用的原理。

1.數據定義

P對學習模式(xp,dp),p=1,2,…,P;

輸入模式矩陣X[N][P]=(x1,x2,…,xP);

目標模式矩陣d[M][P]=(d1,d2,…,dP)。

三層BP網路結構

輸入層神經元節點數S0=N,i=1,2,…,S0;

隱含層神經元節點數S1,j=1,2,…,S1;

神經元激活函數f1[S1];

權值矩陣W1[S1][S0];

偏差向量b1[S1]。

輸出層神經元節點數S2=M,k=1,2,…,S2;

神經元激活函數f2[S2];

權值矩陣W2[S2][S1];

偏差向量b2[S2]。

學習參數

目標誤差ϵ;

初始權更新值Δ0

最大權更新值Δmax

權更新值增大倍數η+

權更新值減小倍數η-

2.誤差函數定義

對第p個輸入模式的誤差的計算公式為

中國礦產資源評價新技術與評價新模型

y2kp為BP網的計算輸出。

3.BP網路學習公式推導

BP網路學習公式推導的指導思想是,對網路的權值W、偏差b修正,使誤差函數沿負梯度方向下降,直到網路輸出誤差精度達到目標精度要求,學習結束。

各層輸出計算公式

輸入層

y0i=xi,i=1,2,…,S0;

隱含層

中國礦產資源評價新技術與評價新模型

y1j=f1(z1j),

j=1,2,…,S1;

輸出層

中國礦產資源評價新技術與評價新模型

y2k=f2(z2k),

k=1,2,…,S2。

輸出節點的誤差公式

中國礦產資源評價新技術與評價新模型

對輸出層節點的梯度公式推導

中國礦產資源評價新技術與評價新模型

E是多個y2m的函數,但只有一個y2k與wkj有關,各y2m間相互獨立。

其中

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

設輸出層節點誤差為

δ2k=(dk-y2k)·f2′(z2k),

中國礦產資源評價新技術與評價新模型

同理可得

中國礦產資源評價新技術與評價新模型

對隱含層節點的梯度公式推導

中國礦產資源評價新技術與評價新模型

E是多個y2k的函數,針對某一個w1ji,對應一個y1j,它與所有的y2k有關。因此,上式只存在對k的求和,其中

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

設隱含層節點誤差為

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

同理可得

中國礦產資源評價新技術與評價新模型

4.採用彈性BP演算法(RPROP)計算權值W、偏差b的修正值ΔW,Δb

1993年德國 Martin Riedmiller和Heinrich Braun 在他們的論文「A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm」中,提出Resilient Backpropagation演算法——彈性BP演算法(RPROP)。這種方法試圖消除梯度的大小對權步的有害影響,因此,只有梯度的符號被認為表示權更新的方向。

權改變的大小僅僅由權專門的「更新值」

確定

中國礦產資源評價新技術與評價新模型

其中

表示在模式集的所有模式(批學習)上求和的梯度信息,(t)表示t時刻或第t次學習。

權更新遵循規則:如果導數是正(增加誤差),這個權由它的更新值減少。如果導數是負,更新值增加。

中國礦產資源評價新技術與評價新模型

RPROP演算法是根據局部梯度信息實現權步的直接修改。對於每個權,我們引入它的

各自的更新值

,它獨自確定權更新值的大小。這是基於符號相關的自適應過程,它基

於在誤差函數E上的局部梯度信息,按照以下的學習規則更新

中國礦產資源評價新技術與評價新模型

其中0<η-<1<η+

在每個時刻,如果目標函數的梯度改變它的符號,它表示最後的更新太大,更新值

應由權更新值減小倍數因子η-得到減少;如果目標函數的梯度保持它的符號,更新值應由權更新值增大倍數因子η+得到增大。

為了減少自由地可調參數的數目,增大倍數因子η+和減小倍數因子η被設置到固定值

η+=1.2,

η-=0.5,

這兩個值在大量的實踐中得到了很好的效果。

RPROP演算法採用了兩個參數:初始權更新值Δ0和最大權更新值Δmax

當學習開始時,所有的更新值被設置為初始值Δ0,因為它直接確定了前面權步的大小,它應該按照權自身的初值進行選擇,例如,Δ0=0.1(默認設置)。

為了使權不至於變得太大,設置最大權更新值限制Δmax,默認上界設置為

Δmax=50.0。

在很多實驗中,發現通過設置最大權更新值Δmax到相當小的值,例如

Δmax=1.0。

我們可能達到誤差減小的平滑性能。

5.計算修正權值W、偏差b

第t次學習,權值W、偏差b的的修正公式

W(t)=W(t-1)+ΔW(t)

b(t)=b(t-1)+Δb(t)

其中,t為學習次數。

6.BP網路學習成功結束條件每次學習累積誤差平方和

中國礦產資源評價新技術與評價新模型

每次學習平均誤差

中國礦產資源評價新技術與評價新模型

當平均誤差MSE<ε,BP網路學習成功結束。

7.BP網路應用預測

在應用BP網路時,提供網路輸入給輸入層,應用給定的BP網路及BP網路學習得到的權值W、偏差b,網路輸入經過從輸入層經各隱含層向輸出層的「順傳播」過程,計算出BP網的預測輸出。

8.神經元激活函數f

線性函數

f(x)=x,

f′(x)=1,

f(x)的輸入范圍(-∞,+∞),輸出范圍(-∞,+∞)。

一般用於輸出層,可使網路輸出任何值。

S型函數S(x)

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍(0,1)。

f′(x)=f(x)[1-f(x)],

f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,

]。

一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(0,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。

在用於模式識別時,可用於輸出層,產生逼近於0或1的二值輸出。

雙曲正切S型函數

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍(-1,1)。

f′(x)=1-f(x)·f(x),

f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,1]。

一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(-1,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。

階梯函數

類型1

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

f′(x)=0。

類型2

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍{-1,1}。

f′(x)=0。

斜坡函數

類型1

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍[0,1]。

中國礦產資源評價新技術與評價新模型

f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

類型2

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍[-1,1]。

中國礦產資源評價新技術與評價新模型

f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

三、總體演算法

1.三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b初始化總體演算法

(1)輸入參數X[N][P],S0,S1,f1[S1],S2,f2[S2];

(2)計算輸入模式X[N][P]各個變數的最大值,最小值矩陣 Xmax[N],Xmin[N];

(3)隱含層的權值W1,偏差b1初始化。

情形1:隱含層激活函數f( )都是雙曲正切S型函數

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9))輸出W1[S1][S0],b1[S1]。

情形2:隱含層激活函數f( )都是S型函數

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag;

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9)輸出W1[S1][S0],b1[S1]。

情形3:隱含層激活函數f( )為其他函數的情形

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9)輸出W1[S1][S0],b1[S1]。

(4)輸出層的權值W2,偏差b2初始化

1)產生[-1,1]之間均勻分布的S2×S1維隨機數矩陣W2[S2][S1];

2)產生[-1,1]之間均勻分布的S2×1維隨機數矩陣b2[S2];

3)輸出W2[S2][S1],b2[S2]。

2.應用彈性BP演算法(RPROP)學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b總體演算法

函數:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)

(1)輸入參數

P對模式(xp,dp),p=1,2,…,P;

三層BP網路結構;

學習參數。

(2)學習初始化

1)

2)各層W,b的梯度值

初始化為零矩陣。

(3)由輸入模式X求第一次學習各層輸出y0,y1,y2及第一次學習平均誤差MSE

(4)進入學習循環

epoch=1

(5)判斷每次學習誤差是否達到目標誤差要求

如果MSE<ϵ,

則,跳出epoch循環,

轉到(12)。

(6)保存第epoch-1次學習產生的各層W,b的梯度值

(7)求第epoch次學習各層W,b的梯度值

1)求各層誤差反向傳播值δ;

2)求第p次各層W,b的梯度值

3)求p=1,2,…,P次模式產生的W,b的梯度值

的累加。

(8)如果epoch=1,則將第epoch-1次學習的各層W,b的梯度值

設為第epoch次學習產生的各層W,b的梯度值

(9)求各層W,b的更新

1)求權更新值Δij更新;

2)求W,b的權更新值

3)求第epoch次學習修正後的各層W,b。

(10)用修正後各層W、b,由X求第epoch次學習各層輸出y0,y1,y2及第epoch次學習誤差MSE

(11)epoch=epoch+1,

如果epoch≤MAX_EPOCH,轉到(5);

否則,轉到(12)。

(12)輸出處理

1)如果MSE<ε,

則學習達到目標誤差要求,輸出W1,b1,W2,b2

2)如果MSE≥ε,

則學習沒有達到目標誤差要求,再次學習。

(13)結束

3.三層BP網路(含輸入層,隱含層,輸出層)預測總體演算法

首先應用Train3lBP_RPROP( )學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b,然後應用三層BP網路(含輸入層,隱含層,輸出層)預測。

函數:Simu3lBP( )。

1)輸入參數:

P個需預測的輸入數據向量xp,p=1,2,…,P;

三層BP網路結構;

學習得到的各層權值W、偏差b。

2)計算P個需預測的輸入數據向量xp(p=1,2,…,P)的網路輸出 y2[S2][P],輸出預測結果y2[S2][P]。

四、總體演算法流程圖

BP網路總體演算法流程圖見附圖2。

五、數據流圖

BP網數據流圖見附圖1。

六、實例

實例一 全國銅礦化探異常數據BP 模型分類

1.全國銅礦化探異常數據准備

在全國銅礦化探數據上用穩健統計學方法選取銅異常下限值33.1,生成全國銅礦化探異常數據。

2.模型數據准備

根據全國銅礦化探異常數據,選取7類33個礦點的化探數據作為模型數據。這7類分別是岩漿岩型銅礦、斑岩型銅礦、矽卡岩型、海相火山型銅礦、陸相火山型銅礦、受變質型銅礦、海相沉積型銅礦,另添加了一類沒有銅異常的模型(表8-1)。

3.測試數據准備

全國化探數據作為測試數據集。

4.BP網路結構

隱層數2,輸入層到輸出層向量維數分別為14,9、5、1。學習率設置為0.9,系統誤差1e-5。沒有動量項。

表8-1 模型數據表

續表

5.計算結果圖

如圖8-2、圖8-3。

圖8-2

圖8-3 全國銅礦礦床類型BP模型分類示意圖

實例二 全國金礦礦石量品位數據BP 模型分類

1.模型數據准備

根據全國金礦儲量品位數據,選取4類34個礦床數據作為模型數據,這4類分別是綠岩型金礦、與中酸性浸入岩有關的熱液型金礦、微細浸染型型金礦、火山熱液型金礦(表8-2)。

2.測試數據准備

模型樣本點和部分金礦點金屬量、礦石量、品位數據作為測試數據集。

3.BP網路結構

輸入層為三維,隱層1層,隱層為三維,輸出層為四維,學習率設置為0.8,系統誤差1e-4,迭代次數5000。

表8-2 模型數據

4.計算結果

結果見表8-3、8-4。

表8-3 訓練學習結果

表8-4 預測結果(部分)

續表

② BP神經網路方法

人工神經網路是近幾年來發展起來的新興學科,它是一種大規模並行分布處理的非線性系統,適用解決難以用數學模型描述的系統,逼近任何非線性的特性,具有很強的自適應、自學習、聯想記憶、高度容錯和並行處理能力,使得神經網路理論的應用已經滲透到了各個領域。近年來,人工神經網路在水質分析和評價中的應用越來越廣泛,並取得良好效果。在這些應用中,縱觀應用於模式識別的神經網路,BP網路是最有效、最活躍的方法之一。

BP網路是多層前向網路的權值學習採用誤差逆傳播學習的一種演算法(Error Back Propagation,簡稱BP)。在具體應用該網路時分為網路訓練及網路工作兩個階段。在網路訓練階段,根據給定的訓練模式,按照「模式的順傳播」→「誤差逆傳播」→「記憶訓練」→「學習收斂」4個過程進行網路權值的訓練。在網路的工作階段,根據訓練好的網路權值及給定的輸入向量,按照「模式順傳播」方式求得與輸入向量相對應的輸出向量的解答(閻平凡,2000)。

BP演算法是一種比較成熟的有指導的訓練方法,是一個單向傳播的多層前饋網路。它包含輸入層、隱含層、輸出層,如圖4-4所示。

圖4-4 地下水質量評價的BP神經網路模型

圖4-4給出了4層地下水水質評價的BP神經網路模型。同層節點之間不連接。輸入信號從輸入層節點,依次傳過各隱含層節點,然後傳到輸出層節點,如果在輸出層得不到期望輸出,則轉入反向傳播,將誤差信號沿原來通路返回,通過學習來修改各層神經元的權值,使誤差信號最小。每一層節點的輸出隻影響下一層節點的輸入。每個節點都對應著一個作用函數(f)和閾值(a),BP網路的基本處理單元量為非線性輸入-輸出的關系,輸入層節點閾值為0,且f(x)=x;而隱含層和輸出層的作用函數為非線性的Sigmoid型(它是連續可微的)函數,其表達式為

f(x)=1/(1+e-x) (4-55)

設有L個學習樣本(Xk,Ok)(k=1,2,…,l),其中Xk為輸入,Ok為期望輸出,Xk經網路傳播後得到的實際輸出為Yk,則Yk與要求的期望輸出Ok之間的均方誤差為

區域地下水功能可持續性評價理論與方法研究

式中:M為輸出層單元數;Yk,p為第k樣本對第p特性分量的實際輸出;Ok,p為第k樣本對第p特性分量的期望輸出。

樣本的總誤差為

區域地下水功能可持續性評價理論與方法研究

由梯度下降法修改網路的權值,使得E取得最小值,學習樣本對Wij的修正為

區域地下水功能可持續性評價理論與方法研究

式中:η為學習速率,可取0到1間的數值。

所有學習樣本對權值Wij的修正為

區域地下水功能可持續性評價理論與方法研究

通常為增加學習過程的穩定性,用下式對Wij再進行修正:

區域地下水功能可持續性評價理論與方法研究

式中:β為充量常量;Wij(t)為BP網路第t次迭代循環訓練後的連接權值;Wij(t-1)為BP網路第t-1次迭代循環訓練後的連接權值。

在BP網路學習的過程中,先調整輸出層與隱含層之間的連接權值,然後調整中間隱含層間的連接權值,最後調整隱含層與輸入層之間的連接權值。實現BP網路訓練學習程序流程,如圖4-5所示(倪深海等,2000)。

圖4-5 BP神經網路模型程序框圖

若將水質評價中的評價標准作為樣本輸入,評價級別作為網路輸出,BP網路通過不斷學習,歸納出評價標准與評價級別間復雜的內在對應關系,即可進行水質綜合評價。

BP網路對地下水質量綜合評價,其評價方法不需要過多的數理統計知識,也不需要對水質量監測數據進行復雜的預處理,操作簡便易行,評價結果切合實際。由於人工神經網路方法具有高度民主的非線性函數映射功能,使得地下水水質評價結果較准確(袁曾任,1999)。

BP網路可以任意逼近任何連續函數,但是它主要存在如下缺點:①從數學上看,它可歸結為一非線性的梯度優化問題,因此不可避免地存在局部極小問題;②學習演算法的收斂速度慢,通常需要上千次或更多。

神經網路具有學習、聯想和容錯功能,是地下水水質評價工作方法的改進,如何在現行的神經網路中進一步吸取模糊和灰色理論的某些優點,建立更適合水質評價的神經網路模型,使該模型既具有方法的先進性又具有現實的可行性,將是我們今後研究和探討的問題。

③ 神經網路演算法的人工神經網路

人工神經網路(Artificial Neural Networks,ANN)系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信 息存儲、良好的自組織自學習能力等特點。BP(Back Propagation)演算法又稱為誤差 反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理 論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。 人工神經元的研究起源於腦神經元學說。19世紀末,在生物、生理學領域,Waldeger等人創建了神經元學說。人們認識到復雜的神經系統是由數目繁多的神經元組合而成。大腦皮層包括有100億個以上的神經元,每立方毫米約有數萬個,它們互相聯結形成神經網路,通過感覺器官和神經接受來自身體內外的各種信息,傳遞至中樞神經系統內,經過對信息的分析和綜合,再通過運動神經發出控制信息,以此來實現機體與內外環境的聯系,協調全身的各種機能活動。
神經元也和其他類型的細胞一樣,包括有細胞膜、細胞質和細胞核。但是神經細胞的形態比較特殊,具有許多突起,因此又分為細胞體、軸突和樹突三部分。細胞體內有細胞核,突起的作用是傳遞信息。樹突是作為引入輸入信號的突起,而軸突是作為輸出端的突起,它只有一個。
樹突是細胞體的延伸部分,它由細胞體發出後逐漸變細,全長各部位都可與其他神經元的軸突末梢相互聯系,形成所謂「突觸」。在突觸處兩神經元並未連通,它只是發生信息傳遞功能的結合部,聯系界面之間間隙約為(15~50)×10米。突觸可分為興奮性與抑制性兩種類型,它相應於神經元之間耦合的極性。每個神經元的突觸數目正常,最高可達10個。各神經元之間的連接強度和極性有所不同,並且都可調整、基於這一特性,人腦具有存儲信息的功能。利用大量神經元相互聯接組成人工神經網路可顯示出人的大腦的某些特徵。
人工神經網路是由大量的簡單基本元件——神經元相互聯接而成的自適應非線性動態系統。每個神經元的結構和功能比較簡單,但大量神經元組合產生的系統行為卻非常復雜。
人工神經網路反映了人腦功能的若干基本特性,但並非生物系統的逼真描述,只是某種模仿、簡化和抽象。
與數字計算機比較,人工神經網路在構成原理和功能特點等方面更加接近人腦,它不是按給定的程序一步一步地執行運算,而是能夠自身適應環境、總結規律、完成某種運算、識別或過程式控制制。
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對於寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。 (1)人類大腦有很強的自適應與自組織特性,後天的學習與訓練可以開發許多各具特色的活動功能。如盲人的聽覺和觸覺非常靈敏;聾啞人善於運用手勢;訓練有素的運動員可以表現出非凡的運動技巧等等。
普通計算機的功能取決於程序中給出的知識和能力。顯然,對於智能活動要通過總結編製程序將十分困難。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。
(2)泛化能力
泛化能力指對沒有訓練過的樣本,有很好的預測能力和控制能力。特別是,當存在一些有雜訊的樣本,網路具備很好的預測能力。
(3)非線性映射能力
當對系統對於設計人員來說,很透徹或者很清楚時,則一般利用數值分析,偏微分方程等數學工具建立精確的數學模型,但當對系統很復雜,或者系統未知,系統信息量很少時,建立精確的數學模型很困難時,神經網路的非線性映射能力則表現出優勢,因為它不需要對系統進行透徹的了解,但是同時能達到輸入與輸出的映射關系,這就大大簡化設計的難度。
(4)高度並行性
並行性具有一定的爭議性。承認具有並行性理由:神經網路是根據人的大腦而抽象出來的數學模型,由於人可以同時做一些事,所以從功能的模擬角度上看,神經網路也應具備很強的並行性。
多少年以來,人們從醫學、生物學、生理學、哲學、信息學、計算機科學、認知學、組織協同學等各個角度企圖認識並解答上述問題。在尋找上述問題答案的研究過程中,這些年來逐漸形成了一個新興的多學科交叉技術領域,稱之為「神經網路」。神經網路的研究涉及眾多學科領域,這些領域互相結合、相互滲透並相互推動。不同領域的科學家又從各自學科的興趣與特色出發,提出不同的問題,從不同的角度進行研究。
下面將人工神經網路與通用的計算機工作特點來對比一下:
若從速度的角度出發,人腦神經元之間傳遞信息的速度要遠低於計算機,前者為毫秒量級,而後者的頻率往往可達幾百兆赫。但是,由於人腦是一個大規模並行與串列組合處理系統,因而,在許多問題上可以作出快速判斷、決策和處理,其速度則遠高於串列結構的普通計算機。人工神經網路的基本結構模仿人腦,具有並行處理特徵,可以大大提高工作速度。
人腦存貯信息的特點為利用突觸效能的變化來調整存貯內容,也即信息存貯在神經元之間連接強度的分布上,存貯區與計算機區合為一體。雖然人腦每日有大量神經細胞死亡 (平均每小時約一千個),但不影響大腦的正常思維活動。
普通計算機是具有相互獨立的存貯器和運算器,知識存貯與數據運算互不相關,只有通過人編出的程序使之溝通,這種溝通不能超越程序編制者的預想。元器件的局部損壞及程序中的微小錯誤都可能引起嚴重的失常。 心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。
生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。
人工神經網路早期的研究工作應追溯至上世紀40年代。下面以時間順序,以著名的人物或某一方面突出的研究成果為線索,簡要介紹人工神經網路的發展歷史。
1943年,心理學家W·Mcculloch和數理邏輯學家W·Pitts在分析、總結神經元基本特性的基礎上首先提出神經元的數學模型。此模型沿用至今,並且直接影響著這一領域研究的進展。因而,他們兩人可稱為人工神經網路研究的先驅。
1945年馮·諾依曼領導的設計小組試製成功存儲程序式電子計算機,標志著電子計算機時代的開始。1948年,他在研究工作中比較了人腦結構與存儲程序式計算機的根本區別,提出了以簡單神經元構成的再生自動機網路結構。但是,由於指令存儲式計算機技術的發展非常迅速,迫使他放棄了神經網路研究的新途徑,繼續投身於指令存儲式計算機技術的研究,並在此領域作出了巨大貢獻。雖然,馮·諾依曼的名字是與普通計算機聯系在一起的,但他也是人工神經網路研究的先驅之一。
50年代末,F·Rosenblatt設計製作了「感知機」,它是一種多層的神經網路。這項工作首次把人工神經網路的研究從理論探討付諸工程實踐。當時,世界上許多實驗室仿效製作感知機,分別應用於文字識別、聲音識別、聲納信號識別以及學習記憶問題的研究。然而,這次人工神經網路的研究高潮未能持續很久,許多人陸續放棄了這方面的研究工作,這是因為當時數字計算機的發展處於全盛時期,許多人誤以為數字計算機可以解決人工智慧、模式識別、專家系統等方面的一切問題,使感知機的工作得不到重視;其次,當時的電子技術工藝水平比較落後,主要的元件是電子管或晶體管,利用它們製作的神經網路體積龐大,價格昂貴,要製作在規模上與真實的神經網路相似是完全不可能的;另外,在1968年一本名為《感知機》的著作中指出線性感知機功能是有限的,它不能解決如異感這樣的基本問題,而且多層網路還不能找到有效的計算方法,這些論點促使大批研究人員對於人工神經網路的前景失去信心。60年代末期,人工神經網路的研究進入了低潮。
另外,在60年代初期,Widrow提出了自適應線性元件網路,這是一種連續取值的線性加權求和閾值網路。後來,在此基礎上發展了非線性多層自適應網路。當時,這些工作雖未標出神經網路的名稱,而實際上就是一種人工神經網路模型。
隨著人們對感知機興趣的衰退,神經網路的研究沉寂了相當長的時間。80年代初期,模擬與數字混合的超大規模集成電路製作技術提高到新的水平,完全付諸實用化,此外,數字計算機的發展在若干應用領域遇到困難。這一背景預示,向人工神經網路尋求出路的時機已經成熟。美國的物理學家Hopfield於1982年和1984年在美國科學院院刊上發表了兩篇關於人工神經網路研究的論文,引起了巨大的反響。人們重新認識到神經網路的威力以及付諸應用的現實性。隨即,一大批學者和研究人員圍繞著 Hopfield提出的方法展開了進一步的工作,形成了80年代中期以來人工神經網路的研究熱潮。
1985年,Ackley、Hinton和Sejnowski將模擬退火演算法應用到神經網路訓練中,提出了Boltzmann機,該演算法具有逃離極值的優點,但是訓練時間需要很長。
1986年,Rumelhart、Hinton和Williams提出了多層前饋神經網路的學習演算法,即BP演算法。它從證明的角度推導演算法的正確性,是學習演算法有理論依據。從學習演算法角度上看,是一個很大的進步。
1988年,Broomhead和Lowe第一次提出了徑向基網路:RBF網路。
總體來說,神經網路經歷了從高潮到低谷,再到高潮的階段,充滿曲折的過程。

閱讀全文

與bp神經網路識別英文大寫字母相關的資料

熱點內容
win10不停開關飛行模式 瀏覽:21
win10搜索應用程序 瀏覽:971
cdr2020免登錄補丁是哪個文件夾 瀏覽:951
電腦查找重復文件 瀏覽:733
js轉換浮點小數 瀏覽:445
生成網卡配置文件命令 瀏覽:963
07word工具 瀏覽:828
安卓哪裡看1080 瀏覽:893
手機瀏覽器保存的網站如何恢復 瀏覽:330
mkv文件如何換聲道 瀏覽:227
會plc編程能做點兒什麼 瀏覽:208
保存文件時沒有後綴 瀏覽:694
哪個頭文件包含getchar 瀏覽:410
還沒有備案怎麼搭建網站 瀏覽:658
類風濕因子如何看懂數據 瀏覽:887
java時鍾代碼看不懂 瀏覽:596
plc密鑰在哪個文件夾 瀏覽:847
良率是什麼六西格瑪數據類型 瀏覽:456
滴滴相關app有哪些 瀏覽:343
篩選單位怎麼體現數據 瀏覽:594

友情鏈接