導航:首頁 > 編程大全 > 線性神經網路畫圖

線性神經網路畫圖

發布時間:2023-09-02 09:43:35

⑴ 關於MATLAB中神經網路工具箱的問題

線性神經網路的構建:
net=newlin(PR,S,ID,LR)
PR--Rx2階矩陣,R個輸入元素的最小最大矩陣
S---輸出層神經元個數
ID--輸入延遲向量,默認值為[0]
IR--學習率,默認值為0.01

net = newlin([-1 1;-1 1],1); 表示設計的是一個雙輸入單輸出線性神經網路
P = [1 2 2 3; 2 1 3 1];表示輸入樣本有四個,每一列就是一個輸入樣本
又比如假設我們期望的輸出為 T=[1 2 3 4],則一個簡單的神經網路如下:

>>net = newlin([-1 1;-1 1],1);%創建初始網路
P=[1 2 2 3; 2 1 3 1]%輸入
T=[1 2 3 4]%期望的輸出
net=newlind(P,T);%用輸入和期望訓練網路
Y=sim(net,P)%模擬,可以看到模擬結果Y和期望輸出T的接近程度
P =
1 2 2 3
2 1 3 1
T =
1 2 3 4
Y =
0.8889 2.1667 3.0556 3.8889

樓主可以從《matlab神經網路與應用(第二版)》董長虹 開始入門神經網路的matlab實現

⑵ MATLAB線性神經網路的程序,跪求。。

美國Michigan 大學的 Holland 教授提出的遺傳演算法(GeneticAlgorithm, GA)是求解復雜的組合優化問題的有效方法 ,其思想來自於達爾文進化論和門德爾松遺傳學說 ,它模擬生物進化過程來從龐大的搜索空間中篩選出較優秀的解,是一種高效而且具有強魯棒性方法。所以,遺傳演算法在求解TSP和 MTSP問題中得到了廣泛的應用。

matlab程序如下:

function[opt_rte,opt_brk,min_dist] =mtspf_ga(xy,dmat,salesmen,min_tour,pop_size,num_iter)

%%

%實例

% n = 20;%城市個數

% xy = 10*rand(n,2);%城市坐標 隨機產生,也可以自己設定

% salesmen = 5;%旅行商個數

% min_tour = 3;%每個旅行商最少訪問的城市數

% pop_size = 80;%種群個數

% num_iter = 200;%迭代次數

% a = meshgrid(1:n);

% dmat =reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n);

% [opt_rte,opt_brk,min_dist] = mtspf_ga(xy,dmat,salesmen,min_tour,...

% pop_size,num_iter);%函數

%%

[N,dims]= size(xy); %城市矩陣大小

[nr,nc]= size(dmat); %城市距離矩陣大小

n = N -1;% 除去起始的城市後剩餘的城市的數

% 初始化路線、斷點的選擇

num_brks= salesmen-1;

dof = n- min_tour*salesmen; %初始化路線、斷點的選擇

addto =ones(1,dof+1);

for k =2:num_brks

addto = cumsum(addto);

end

cum_prob= cumsum(addto)/sum(addto);

%% 初始化種群

pop_rte= zeros(pop_size,n); % 種群路徑

pop_brk= zeros(pop_size,num_brks); % 斷點集合的種群

for k =1:pop_size

pop_rte(k,:) = randperm(n)+1;

pop_brk(k,:) = randbreaks();

end

% 畫圖路徑曲線顏色

clr =[1 0 0; 0 0 1; 0.67 0 1; 0 1 0; 1 0.5 0];

ifsalesmen > 5

clr = hsv(salesmen);

end

%%

% 基於遺傳演算法的MTSP

global_min= Inf; %初始化最短路徑

total_dist= zeros(1,pop_size);

dist_history= zeros(1,num_iter);

tmp_pop_rte= zeros(8,n);%當前的路徑設置

tmp_pop_brk= zeros(8,num_brks); %當前的斷點設置

new_pop_rte= zeros(pop_size,n);%更新的路徑設置

new_pop_brk= zeros(pop_size,num_brks);%更新的斷點設置

foriter = 1:num_iter

% 計算適應值

for p = 1:pop_size

d = 0;

p_rte = pop_rte(p,:);

p_brk = pop_brk(p,:);

rng = [[1 p_brk+1];[p_brk n]]';

for s = 1:salesmen

d = d + dmat(1,p_rte(rng(s,1)));% 添加開始的路徑

for k = rng(s,1):rng(s,2)-1

d = d + dmat(p_rte(k),p_rte(k+1));

end

d = d + dmat(p_rte(rng(s,2)),1); % 添加結束的的路徑

end

total_dist(p) = d;

end

% 找到種群中最優路徑

[min_dist,index] = min(total_dist);

dist_history(iter) = min_dist;

if min_dist < global_min

global_min = min_dist;

opt_rte = pop_rte(index,:); %最優的最短路徑

opt_brk = pop_brk(index,:);%最優的斷點設置

rng = [[1 opt_brk+1];[opt_brk n]]';%設置記錄斷點的方法

figure(1);

for s = 1:salesmen

rte = [1 opt_rte(rng(s,1):rng(s,2))1];

plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:));

title(sprintf('城市數目為 = %d,旅行商數目為 = %d,總路程 = %1.4f, 迭代次數 =%d',n+1,salesmen,min_dist,iter));

hold on

grid on

end

plot(xy(1,1),xy(1,2),'ko');

hold off

end

% 遺傳操作

rand_grouping = randperm(pop_size);

for p = 8:8:pop_size

rtes = pop_rte(rand_grouping(p-7:p),:);

brks = pop_brk(rand_grouping(p-7:p),:);

dists =total_dist(rand_grouping(p-7:p));

[ignore,idx] = min(dists);

best_of_8_rte = rtes(idx,:);

best_of_8_brk = brks(idx,:);

rte_ins_pts = sort(ceil(n*rand(1,2)));

I = rte_ins_pts(1);

J = rte_ins_pts(2);

for k = 1:8 %產生新種群

tmp_pop_rte(k,:) = best_of_8_rte;

tmp_pop_brk(k,:) = best_of_8_brk;

switch k

case 2% 倒置操作

tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J));

case 3 % 互換操作

tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I]);

case 4 % 滑動平移操作

tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I]);

case 5% 更新斷點

tmp_pop_brk(k,:) = randbreaks();

case 6 % 倒置並更新斷點

tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J));

tmp_pop_brk(k,:) =randbreaks();

case 7 % 互換並更新斷點

tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I]);

tmp_pop_brk(k,:) =randbreaks();

case 8 % 評議並更新斷點

tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I]);

tmp_pop_brk(k,:) =randbreaks();

otherwise

end

end

new_pop_rte(p-7:p,:) = tmp_pop_rte;

new_pop_brk(p-7:p,:) = tmp_pop_brk;

end

pop_rte = new_pop_rte;

pop_brk = new_pop_brk;

end

figure(2)

plot(dist_history,'b','LineWidth',2);

title('歷史最優解');

xlabel('迭代次數')

ylabel('最優路程')

% 隨機產生一套斷點 的集合

function breaks = randbreaks()

if min_tour == 1 % 一個旅行商時,沒有斷點的設置

tmp_brks = randperm(n-1);

breaks =sort(tmp_brks(1:num_brks));

else % 強制斷點至少找到最短的履行長度

num_adjust = find(rand <cum_prob,1)-1;

spaces =ceil(num_brks*rand(1,num_adjust));

adjust = zeros(1,num_brks);

for kk = 1:num_brks

adjust(kk) = sum(spaces == kk);

end

breaks = min_tour*(1:num_brks) +cumsum(adjust);

end

end

disp('最優路徑為:/n')

disp(opt_rte);

disp('其中斷點為為:/n')

disp(opt_brk);

end


⑶ 有什麼神經網路結構圖的畫圖工具值得推薦嗎

我也不是醫學科的,不會什麼專業神經構圖,但是我經常使用這個軟體,這里就推薦一下LaTex自帶的tikz,這個挺簡便的方便操作,省去了復雜的出入重復步驟操作,還不錯的哦

⑷ (七)神經網路基本結構

目前為止,我們已經學習了2個機器學習模型。線性回歸一般用來處理線性問題,邏輯回歸用來處理2分類問題。雖然邏輯回歸也可以處理非線性的分類問題,但是當我們有非常多的特徵時,例如大於100個變數,將會有數量非常驚人的特徵組合。這對於一般的邏輯回歸來說需要計算的特徵太多了,負荷太大。而神經網路既可以答衫解決復雜的非線性分類問題,又可以避免龐大的計算量。

人工神經網路是由很多神經元(激活單元)構成的,神經元是神經網路的基本元素。

實際上,可以這樣理解神經元工作過程,當將輸入送進神經元後,神經元將輸入與權值線性組合(實際上就是θ T X)輸出一個線性表達式,再將這個表達式送嘩舉拿入激活函數中,便得到了神經元的真實輸出。

神經網路由好多個激活單元構成,如下圖所示:

激活函數的選擇是構建神經網路過程中的重要環節,下面簡要介紹常用的激活函數。

(1) 線性函數( Liner Function )

(2) 斜面函數( Ramp Function )**

(3) 閾值函數( Threshold Function )**

以上3個激活函數都屬於線性函數,下面介紹兩個常用的非線性激活函數。
(4) S形函數( Sigmoid Function )

S形函數與雙極S形函數的圖像如下:

雙極S形函數與S形函數主要區別在於函數的值域,雙極S形函數值域是(-1,1),而S形函數值域是(0,1)。由於S形函數與雙極S形函數都是 可導的 (導函數是連續函數),因此適合用在BP神經亂搭網路中。(BP演算法要求激活函數可導)

人工神經網路中,最常用的激活函數就是sigmoid函數

神經網路是由大量的神經元互聯而構成的網路。根據網路中神經元的互聯方式,常見網路結構主要可以分為下面3類:

前饋網路也稱前向網路,是最常見的神經網路,前文提到的都是前饋網路。稱之為前饋是因為它在輸出和模型本身之間沒有反饋,數據只能向前傳送,直到到達輸出層,層間沒有向後的反饋信號。

反饋型神經網路是一種從輸出到輸入具有反饋連接的神經網路,其結構比前饋網路要復雜得多。

自組織神經網路是一種無監督學習網路。它通過自動尋找樣本中的內在規律和本質屬性,自組織、自適應地改變網路參數與結構。

閱讀全文

與線性神經網路畫圖相關的資料

熱點內容
java隨機百分比 瀏覽:625
c語言數學函數頭文件 瀏覽:625
歷年溫度數據怎麼下載 瀏覽:360
新qq如何改密碼忘了怎麼辦 瀏覽:123
函數的編程是什麼 瀏覽:522
什麼網站上能叫小姐 瀏覽:534
壓縮文件解壓打開方式 瀏覽:86
高中生查成績用哪個app 瀏覽:874
win10家庭組無法離開 瀏覽:102
微信插件文件 瀏覽:493
不讓修改的pdf文件 瀏覽:946
會聲會影模板文件格式 瀏覽:59
iphone6郵件刪除容量 瀏覽:784
暑假編程培訓怎麼學 瀏覽:88
對商家怎麼推廣app 瀏覽:92
xplane10安卓破解 瀏覽:309
下載中國知網免費入口登入工具 瀏覽:959
台達編程軟體如何下載安裝 瀏覽:758
c程序設計試題匯編譚浩強pdf 瀏覽:28
任務欄出現的文件在哪裡 瀏覽:119

友情鏈接