線性神經網路的構建:
net=newlin(PR,S,ID,LR)
PR--Rx2階矩陣,R個輸入元素的最小最大矩陣
S---輸出層神經元個數
ID--輸入延遲向量,默認值為[0]
IR--學習率,默認值為0.01
net = newlin([-1 1;-1 1],1); 表示設計的是一個雙輸入單輸出線性神經網路
P = [1 2 2 3; 2 1 3 1];表示輸入樣本有四個,每一列就是一個輸入樣本
又比如假設我們期望的輸出為 T=[1 2 3 4],則一個簡單的神經網路如下:
>>net = newlin([-1 1;-1 1],1);%創建初始網路
P=[1 2 2 3; 2 1 3 1]%輸入
T=[1 2 3 4]%期望的輸出
net=newlind(P,T);%用輸入和期望訓練網路
Y=sim(net,P)%模擬,可以看到模擬結果Y和期望輸出T的接近程度
P =
1 2 2 3
2 1 3 1
T =
1 2 3 4
Y =
0.8889 2.1667 3.0556 3.8889
樓主可以從《matlab神經網路與應用(第二版)》董長虹 開始入門神經網路的matlab實現
⑵ MATLAB線性神經網路的程序,跪求。。
美國Michigan 大學的 Holland 教授提出的遺傳演算法(GeneticAlgorithm, GA)是求解復雜的組合優化問題的有效方法 ,其思想來自於達爾文進化論和門德爾松遺傳學說 ,它模擬生物進化過程來從龐大的搜索空間中篩選出較優秀的解,是一種高效而且具有強魯棒性方法。所以,遺傳演算法在求解TSP和 MTSP問題中得到了廣泛的應用。
matlab程序如下:
function[opt_rte,opt_brk,min_dist] =mtspf_ga(xy,dmat,salesmen,min_tour,pop_size,num_iter)
%%
%實例
% n = 20;%城市個數
% xy = 10*rand(n,2);%城市坐標 隨機產生,也可以自己設定
% salesmen = 5;%旅行商個數
% min_tour = 3;%每個旅行商最少訪問的城市數
% pop_size = 80;%種群個數
% num_iter = 200;%迭代次數
% a = meshgrid(1:n);
% dmat =reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n);
% [opt_rte,opt_brk,min_dist] = mtspf_ga(xy,dmat,salesmen,min_tour,...
% pop_size,num_iter);%函數
%%
[N,dims]= size(xy); %城市矩陣大小
[nr,nc]= size(dmat); %城市距離矩陣大小
n = N -1;% 除去起始的城市後剩餘的城市的數
% 初始化路線、斷點的選擇
num_brks= salesmen-1;
dof = n- min_tour*salesmen; %初始化路線、斷點的選擇
addto =ones(1,dof+1);
for k =2:num_brks
addto = cumsum(addto);
end
cum_prob= cumsum(addto)/sum(addto);
%% 初始化種群
pop_rte= zeros(pop_size,n); % 種群路徑
pop_brk= zeros(pop_size,num_brks); % 斷點集合的種群
for k =1:pop_size
pop_rte(k,:) = randperm(n)+1;
pop_brk(k,:) = randbreaks();
end
% 畫圖路徑曲線顏色
clr =[1 0 0; 0 0 1; 0.67 0 1; 0 1 0; 1 0.5 0];
ifsalesmen > 5
clr = hsv(salesmen);
end
%%
% 基於遺傳演算法的MTSP
global_min= Inf; %初始化最短路徑
total_dist= zeros(1,pop_size);
dist_history= zeros(1,num_iter);
tmp_pop_rte= zeros(8,n);%當前的路徑設置
tmp_pop_brk= zeros(8,num_brks); %當前的斷點設置
new_pop_rte= zeros(pop_size,n);%更新的路徑設置
new_pop_brk= zeros(pop_size,num_brks);%更新的斷點設置
foriter = 1:num_iter
% 計算適應值
for p = 1:pop_size
d = 0;
p_rte = pop_rte(p,:);
p_brk = pop_brk(p,:);
rng = [[1 p_brk+1];[p_brk n]]';
for s = 1:salesmen
d = d + dmat(1,p_rte(rng(s,1)));% 添加開始的路徑
for k = rng(s,1):rng(s,2)-1
d = d + dmat(p_rte(k),p_rte(k+1));
end
d = d + dmat(p_rte(rng(s,2)),1); % 添加結束的的路徑
end
total_dist(p) = d;
end
% 找到種群中最優路徑
[min_dist,index] = min(total_dist);
dist_history(iter) = min_dist;
if min_dist < global_min
global_min = min_dist;
opt_rte = pop_rte(index,:); %最優的最短路徑
opt_brk = pop_brk(index,:);%最優的斷點設置
rng = [[1 opt_brk+1];[opt_brk n]]';%設置記錄斷點的方法
figure(1);
for s = 1:salesmen
rte = [1 opt_rte(rng(s,1):rng(s,2))1];
plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:));
title(sprintf('城市數目為 = %d,旅行商數目為 = %d,總路程 = %1.4f, 迭代次數 =%d',n+1,salesmen,min_dist,iter));
hold on
grid on
end
plot(xy(1,1),xy(1,2),'ko');
hold off
end
% 遺傳操作
rand_grouping = randperm(pop_size);
for p = 8:8:pop_size
rtes = pop_rte(rand_grouping(p-7:p),:);
brks = pop_brk(rand_grouping(p-7:p),:);
dists =total_dist(rand_grouping(p-7:p));
[ignore,idx] = min(dists);
best_of_8_rte = rtes(idx,:);
best_of_8_brk = brks(idx,:);
rte_ins_pts = sort(ceil(n*rand(1,2)));
I = rte_ins_pts(1);
J = rte_ins_pts(2);
for k = 1:8 %產生新種群
tmp_pop_rte(k,:) = best_of_8_rte;
tmp_pop_brk(k,:) = best_of_8_brk;
switch k
case 2% 倒置操作
tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J));
case 3 % 互換操作
tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I]);
case 4 % 滑動平移操作
tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I]);
case 5% 更新斷點
tmp_pop_brk(k,:) = randbreaks();
case 6 % 倒置並更新斷點
tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J));
tmp_pop_brk(k,:) =randbreaks();
case 7 % 互換並更新斷點
tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I]);
tmp_pop_brk(k,:) =randbreaks();
case 8 % 評議並更新斷點
tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I]);
tmp_pop_brk(k,:) =randbreaks();
otherwise
end
end
new_pop_rte(p-7:p,:) = tmp_pop_rte;
new_pop_brk(p-7:p,:) = tmp_pop_brk;
end
pop_rte = new_pop_rte;
pop_brk = new_pop_brk;
end
figure(2)
plot(dist_history,'b','LineWidth',2);
title('歷史最優解');
xlabel('迭代次數')
ylabel('最優路程')
% 隨機產生一套斷點 的集合
function breaks = randbreaks()
if min_tour == 1 % 一個旅行商時,沒有斷點的設置
tmp_brks = randperm(n-1);
breaks =sort(tmp_brks(1:num_brks));
else % 強制斷點至少找到最短的履行長度
num_adjust = find(rand <cum_prob,1)-1;
spaces =ceil(num_brks*rand(1,num_adjust));
adjust = zeros(1,num_brks);
for kk = 1:num_brks
adjust(kk) = sum(spaces == kk);
end
breaks = min_tour*(1:num_brks) +cumsum(adjust);
end
end
disp('最優路徑為:/n')
disp(opt_rte);
disp('其中斷點為為:/n')
disp(opt_brk);
end
⑶ 有什麼神經網路結構圖的畫圖工具值得推薦嗎
我也不是醫學科的,不會什麼專業神經構圖,但是我經常使用這個軟體,這里就推薦一下LaTex自帶的tikz,這個挺簡便的方便操作,省去了復雜的出入重復步驟操作,還不錯的哦
⑷ (七)神經網路基本結構
目前為止,我們已經學習了2個機器學習模型。線性回歸一般用來處理線性問題,邏輯回歸用來處理2分類問題。雖然邏輯回歸也可以處理非線性的分類問題,但是當我們有非常多的特徵時,例如大於100個變數,將會有數量非常驚人的特徵組合。這對於一般的邏輯回歸來說需要計算的特徵太多了,負荷太大。而神經網路既可以答衫解決復雜的非線性分類問題,又可以避免龐大的計算量。
人工神經網路是由很多神經元(激活單元)構成的,神經元是神經網路的基本元素。
實際上,可以這樣理解神經元工作過程,當將輸入送進神經元後,神經元將輸入與權值線性組合(實際上就是θ T X)輸出一個線性表達式,再將這個表達式送嘩舉拿入激活函數中,便得到了神經元的真實輸出。
神經網路由好多個激活單元構成,如下圖所示:
激活函數的選擇是構建神經網路過程中的重要環節,下面簡要介紹常用的激活函數。
(1) 線性函數( Liner Function )
(2) 斜面函數( Ramp Function )**
(3) 閾值函數( Threshold Function )**
以上3個激活函數都屬於線性函數,下面介紹兩個常用的非線性激活函數。
(4) S形函數( Sigmoid Function )
S形函數與雙極S形函數的圖像如下:
雙極S形函數與S形函數主要區別在於函數的值域,雙極S形函數值域是(-1,1),而S形函數值域是(0,1)。由於S形函數與雙極S形函數都是 可導的 (導函數是連續函數),因此適合用在BP神經亂搭網路中。(BP演算法要求激活函數可導)
人工神經網路中,最常用的激活函數就是sigmoid函數
神經網路是由大量的神經元互聯而構成的網路。根據網路中神經元的互聯方式,常見網路結構主要可以分為下面3類:
前饋網路也稱前向網路,是最常見的神經網路,前文提到的都是前饋網路。稱之為前饋是因為它在輸出和模型本身之間沒有反饋,數據只能向前傳送,直到到達輸出層,層間沒有向後的反饋信號。
反饋型神經網路是一種從輸出到輸入具有反饋連接的神經網路,其結構比前饋網路要復雜得多。
自組織神經網路是一種無監督學習網路。它通過自動尋找樣本中的內在規律和本質屬性,自組織、自適應地改變網路參數與結構。