導航:首頁 > 編程大全 > 多線程實現網路爬蟲

多線程實現網路爬蟲

發布時間:2023-08-31 07:22:09

㈠ Python 3 網路爬蟲學習建議

用py3寫爬蟲的話,強力推薦這本書,應該是目前最系統最完善介紹python爬蟲的書。可以去圖靈社區買電子版。書的內容很新也很系統,從beautifulSoup,requests到ajax,圖像識別,單元測試。比起絕大多數blog零散的教程要好的多,看完書後就可以去做些實戰項目,這個時候可以去github上找類似的項目借鑒下。英文版pdf:個人覺得英文版更好)中文版pdf:這本書內容比較淺,我表示贊同。但是對於新手來說,看完這本書,對於爬蟲基礎的應用與概念絕對有了初步的了解。其實國內有一本講爬蟲的好書,《自己動手寫網路爬蟲》,這本書除了介紹爬蟲基本原理,包括優先順序,寬度優先搜索,分布式爬蟲,多線程,還有雲計算,數據挖掘內容。只不過用了java來實現,但是思路是相同的。有這幾個包基本上就夠用了。當初學習爬蟲的時候一點都不懂,甚至連爬蟲是什麼都不知道就在學了,但是懷著不懂裝懂的精神,到現在基本上也算對爬蟲了解一二。正如你所說,爬蟲是個大坑!因為這不僅僅是Python的事,想要學好爬蟲,需要學習:網路基礎知識(post/get/抓包)、(推薦)正則表達式(re模塊)、多線程/多進程、資料庫(儲存)。還有各種各樣的問題:Python蛋疼的編碼問題、遇到Ajax就要用selenium(效率低)、遇到驗證碼腫么辦(我放棄)、需要模擬登錄(我直接用cookies,在這里推薦requests,用法是:被網站禁ip等等所以,如果你是想學爬蟲,那麼就慢慢磨吧。但是你是想學習機器學習,網上那麼多的數據集,可以不必專門學。

㈡ 如何用Python做爬蟲

1)首先你要明白爬蟲怎樣工作。

想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。

在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。

突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。

好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。

那麼在python里怎麼實現呢?
很簡單

import Queue

initial_page = "初始化頁"

url_queue = Queue.Queue()
seen = set()

seen.insert(initial_page)
url_queue.put(initial_page)

while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲好
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break

寫得已經很偽代碼了。

所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。

2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。

問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。

通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example

注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]

好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。

3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了...

那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?

我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)

考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。

代碼於是寫成

#slave.py

current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)

store(current_url);
send_to_master(to_send)

#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()

initial_pages = "www.renmingribao.com"

while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)

好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。

但是如果附加上你需要這些後續處理,比如

有效地存儲(資料庫應該怎樣安排)

有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)

有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...

及時更新(預測這個網頁多久會更新一次)

如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。

所以,不要問怎麼入門,直接上路就好了:)

㈢ 除了python可以爬蟲還有哪些編程語言可以爬蟲

能夠做網路爬蟲的編程語言很多,包括PHP、Java、C/C++、Python等都能做爬蟲,都能達到抓取想要的數據資源。針對不同的環境,我們需要了解他們做爬蟲的優缺點,才能選出合適的開發環境。

(一)PHP
網路爬蟲需要快速的從伺服器中抓取需要的數據,有時數據量較大時需要進行多線程抓取。PHP雖然是世界上最好的語言,但是PHP對多線程、非同步支持不足,並發不足,而爬蟲程序對速度和效率要求極高,所以說PHP天生不是做爬蟲的。

(二)C/C++
C語言是一門面向過程、抽象化的通用程序設計語言,廣泛應用於底層開發,運行效率和性能是最強大的,但是它的學習成本非常高,需要有很好地編搏陵程知識基礎,對於初學者或者編程知識不是很好地程序員來說,不是一個很好的選擇。當然,能夠用C/C++編寫爬蟲程序,足以說明能力很強,但是絕不是最正確的選擇。

(三)Java
在網路爬蟲方面,作為Python最大的對手Java,擁有強大的生態圈。但絕銀明是Java本身很笨重,代碼量大。由於爬蟲與反爬蟲的並告較量是持久的,也是頻繁的,剛寫好的爬蟲程序很可能就不能用了。爬蟲程序需要經常性的修改部分代碼。而Java的重構成本比較高,任何修改都會導致大量代碼的變動。

(四)Python
Python在設計上堅持了清晰劃一的風格,易讀、易維護,語法優美、代碼簡潔、開發效率高、第三方模塊多。並且擁有強大的爬蟲Scrapy,以及成熟高效的scrapy-redis分布式策略。實現同樣的爬蟲功能,代碼量少,而且維護方便,開發效率高。

閱讀全文

與多線程實現網路爬蟲相關的資料

熱點內容
如何用網路打普通電話 瀏覽:463
linux進程打開的文件 瀏覽:134
新購u盤無法儲存文件 瀏覽:553
5s要不要升級ios93 瀏覽:926
小米手機助手怎麼關閉自動升級 瀏覽:24
外星人能不能升級到win10系統盤 瀏覽:652
加入java信任站點 瀏覽:486
好用的急救知識app 瀏覽:524
什麼是網路適配器驅動文件名 瀏覽:717
吉林文件箱多少錢 瀏覽:113
ae模板版本 瀏覽:204
手機qq步數功能在哪裡 瀏覽:721
c程序設計04737 瀏覽:403
女孩什麼年齡學編程 瀏覽:976
安慶如何做網路營銷推廣 瀏覽:620
什麼是數據標准化 瀏覽:708
aecc三維功能實例視頻教程 瀏覽:719
iphone6s靜音鍵用法 瀏覽:560
油卡盒子APP是什麼公司名下的 瀏覽:597
怪物獵人wp文件夾什麼意思 瀏覽:108

友情鏈接