導航:首頁 > 編程大全 > 神經網路在圖像處理中的應用

神經網路在圖像處理中的應用

發布時間:2023-08-16 15:33:56

⑴ 如何通過人工神經網路實現圖像識別

人工神經網路( Neural Networks)(簡稱ANN)系統從20 世紀40 年代末誕生至今僅短短半個多世紀,但由於他具有信息的分布存儲、並行處理以及自學習能力等優點,已經在信息處理、模式識別、智能控制及系統建模等領域得到越來越廣泛的應用。尤其是基於誤差反向傳播(Error Back Propagation)演算法的多層前饋網路(Multiple-Layer Feedforward Network)(簡稱BP 網路),可以以任意精度逼近任意的連續函數,所以廣泛應用於非線性建模、函數逼近、模式分類等方面。


目標識別是模式識別領域的一項傳統的課題,這是因為目標識別不是一個孤立的問題,而是模式識別領域中大多數課題都會遇到的基本問題,並且在不同的課題中,由於具體的條件不同,解決的方法也不盡相同,因而目標識別的研究仍具有理論和實踐意義。這里討論的是將要識別的目標物體用成像頭(紅外或可見光等)攝入後形成的圖像信號序列送入計算機,用神經網路識別圖像的問題。


一、BP 神經網路


BP 網路是採用Widrow-Hoff 學習演算法和非線性可微轉移函數的多層網路。一個典型的BP 網路採用的是梯度下降演算法,也就是Widrow-Hoff 演算法所規定的。backpropagation 就是指的為非線性多層網路計算梯度的方法。一個典型的BP 網路結構如圖所示。

六、總結

從上述的試驗中已經可以看出,採用神經網路識別是切實可行的,給出的例子只是簡單的數字識別實驗,要想在網路模式下識別復雜的目標圖像則需要降低網路規模,增加識別能力,原理是一樣的。

⑵ 一文看懂卷積神經網路-CNN(基本原理+獨特價值+實際應用)

在 CNN 出現之前,圖像對於人工智慧來說是一個難題,有2個原因:

圖像需要處理的數據量太大,導致成本很高,效率很低

圖像在數字化的過程中很難保留原有的特徵,導致圖像處理的准確率不高

下面就詳細說明一下這2個問題:

圖像是由像素構成的,每個像素又是由顏色構成的。

現在隨隨便便一張圖片都是 1000×1000 像素以上的, 每個像素都有RGB 3個參數來表示顏色信息。

假如我們處理一張 1000×1000 像素的圖片,我們就需要處理3百萬個參數!

1000×1000×3=3,000,000

這么大量的數據處理起來是非常消耗資源的,而且這只是一張不算太大的圖片!

卷積神經網路 – CNN 解決的第一個問題就是「將復雜問題簡化」,把大量參數降維成少量參數,再做處理。

更重要的是:我們在大部分場景下,降維並不會影響結果。比如1000像素的圖片縮小成200像素,並不影響肉眼認出來圖片中是一隻貓還是一隻狗,機器也是如此。

圖片數字化的傳統方式我們簡化一下,就類似下圖的過程:

假如有圓形是1,沒有圓形是0,那麼圓形的位置不同就會產生完全不同的數據表達。但是從視覺的角度來看, 圖像的內容(本質)並沒有發生變化,只是位置發生了變化 。

所以當我們移動圖像中的物體,用傳統的方式的得出來的參數會差異很大!這是不符合圖像處理的要求的。

而 CNN 解決了這個問題,他用類似視覺的方式保留了圖像的特徵,當圖像做翻轉,旋轉或者變換位置時,它也能有效的識別出來是類似的圖像。

那麼卷積神經網路是如何實現的呢?在我們了解 CNN 原理之前,先來看看人類的視覺原理是什麼?

深度學習的許多研究成果,離不開對大腦認知原理的研究,尤其是視覺原理的研究。

1981 年的諾貝爾醫學獎,頒發給了 David Hubel(出生於加拿大的美國神經生物學家) 和TorstenWiesel,以及 Roger Sperry。前兩位的主要貢獻,是「 發現了視覺系統的信息處理 」,可視皮層是分級的。

人類的視覺原理如下:從原始信號攝入開始(瞳孔攝入像素 Pixels),接著做初步處理(大腦皮層某些細胞發現邊緣和方向),然後抽象(大腦判定,眼前的物體的形狀,是圓形的),然後進一步抽象(大腦進一步判定該物體是只氣球)。下面是人腦進行人臉識別的一個示例:

對於不同的物體,人類視覺也是通過這樣逐層分級,來進行認知的:

我們可以看到,在最底層特徵基本上是類似的,就是各種邊緣,越往上,越能提取出此類物體的一些特徵(輪子、眼睛、軀乾等),到最上層,不同的高級特徵最終組合成相應的圖像,從而能夠讓人類准確的區分不同的物體。

那麼我們可以很自然的想到:可以不可以模仿人類大腦的這個特點,構造多層的神經網路,較低層的識別初級的圖像特徵,若干底層特徵組成更上一層特徵,最終通過多個層級的組合,最終在頂層做出分類呢?

答案是肯定的,這也是許多深度學習演算法(包括CNN)的靈感來源。

典型的 CNN 由3個部分構成:

卷積層

池化層

全連接層

如果簡單來描述的話:

卷積層負責提取圖像中的局部特徵;池化層用來大幅降低參數量級(降維);全連接層類似傳統神經網路的部分,用來輸出想要的結果。

下面的原理解釋為了通俗易懂,忽略了很多技術細節,如果大家對詳細的原理感興趣,可以看這個視頻《 卷積神經網路基礎 》。

卷積層的運算過程如下圖,用一個卷積核掃完整張圖片:

這個過程我們可以理解為我們使用一個過濾器(卷積核)來過濾圖像的各個小區域,從而得到這些小區域的特徵值。

在具體應用中,往往有多個卷積核,可以認為,每個卷積核代表了一種圖像模式,如果某個圖像塊與此卷積核卷積出的值大,則認為此圖像塊十分接近於此卷積核。如果我們設計了6個卷積核,可以理解:我們認為這個圖像上有6種底層紋理模式,也就是我們用6中基礎模式就能描繪出一副圖像。以下就是25種不同的卷積核的示例:

總結:卷積層的通過卷積核的過濾提取出圖片中局部的特徵,跟上面提到的人類視覺的特徵提取類似。

池化層簡單說就是下采樣,他可以大大降低數據的維度。其過程如下:

上圖中,我們可以看到,原始圖片是20×20的,我們對其進行下采樣,采樣窗口為10×10,最終將其下采樣成為一個2×2大小的特徵圖。

之所以這么做的原因,是因為即使做完了卷積,圖像仍然很大(因為卷積核比較小),所以為了降低數據維度,就進行下采樣。

總結:池化層相比卷積層可以更有效的降低數據維度,這么做不但可以大大減少運算量,還可以有效的避免過擬合。

這個部分就是最後一步了,經過卷積層和池化層處理過的數據輸入到全連接層,得到最終想要的結果。

經過卷積層和池化層降維過的數據,全連接層才能」跑得動」,不然數據量太大,計算成本高,效率低下。

典型的 CNN 並非只是上面提到的3層結構,而是多層結構,例如 LeNet-5 的結構就如下圖所示:

卷積層 – 池化層- 卷積層 – 池化層 – 卷積層 – 全連接層

在了解了 CNN 的基本原理後,我們重點說一下 CNN 的實際應用有哪些。

卷積神經網路 – CNN 很擅長處理圖像。而視頻是圖像的疊加,所以同樣擅長處理視頻內容。下面給大家列一些比較成熟的應用�:

圖像分類、檢索

圖像分類是比較基礎的應用,他可以節省大量的人工成本,將圖像進行有效的分類。對於一些特定領域的圖片,分類的准確率可以達到 95%+,已經算是一個可用性很高的應用了。

典型場景:圖像搜索…

目標定位檢測

可以在圖像中定位目標,並確定目標的位置及大小。

典型場景:自動駕駛、安防、醫療…

目標分割

簡單理解就是一個像素級的分類。

他可以對前景和背景進行像素級的區分、再高級一點還可以識別出目標並且對目標進行分類。

典型場景:美圖秀秀、視頻後期加工、圖像生成…

人臉識別

人臉識別已經是一個非常普及的應用了,在很多領域都有廣泛的應用。

典型場景:安防、金融、生活…

骨骼識別

骨骼識別是可以識別身體的關鍵骨骼,以及追蹤骨骼的動作。

典型場景:安防、電影、圖像視頻生成、游戲…

今天我們介紹了 CNN 的價值、基本原理和應用場景,簡單總結如下:

CNN 的價值:

能夠將大數據量的圖片有效的降維成小數據量(並不影響結果)

能夠保留圖片的特徵,類似人類的視覺原理

CNN 的基本原理:

卷積層 – 主要作用是保留圖片的特徵

池化層 – 主要作用是把數據降維,可以有效的避免過擬合

全連接層 – 根據不同任務輸出我們想要的結果

CNN 的實際應用:

圖片分類、檢索

目標定位檢測

目標分割

人臉識別

骨骼識別

本文首發在 easyAI - 人工智慧知識庫

《 一文看懂卷積神經網路-CNN(基本原理+獨特價值+實際應用) 》

⑶ 卷積神經網路CNN在圖像識別問題應用綜述(20191219)

   這兩天在公司做PM實習,主要是自學一些CV的知識,以了解產品在解決一些在圖像識別、圖像搜索方面的問題,學習的主要方式是在知網檢索了6.7篇國內近3年計算機視覺和物體識別的碩博士論文。由於時間關系,後面還會繼續更新圖片相似度計算(以圖搜圖)等方面的學習成果
   將這兩天的學習成果在這里總結一下。你將會看到計算機視覺在解決特定物體識別問題(主要是卷積神經網路CNNs)的基礎過程和原理,但這里不會深入到技術的實現層面。

  計算機視覺(Computer vision)是一門研究如何使機器「看」的科學,更進一步的說,就是指用攝影機和計算機代替人眼對目標進行識別、跟蹤和測量等機器視覺,並進一步做圖像處理,用計算機處理成為更適合人眼觀察或傳送給儀器檢測的圖像。
                                         ————維基網路
  通常而言,計算機視覺的研究包括三個層次:
(1)底層特徵的研究:
  這一層次的研究主要聚焦如何高效提取出圖像對象具有判別性能的特徵,具體的研究內容通常包括:物體識別、字元識別等
(2)中層語義特徵的研究:
   該層次的研究在於在識別出對象的基礎上,對其位置、邊緣等信息能夠准確區分。現在比較熱門的:圖像分割;語義分割;場景標注等,都屬於該領域的范疇
(3)高層語義理解:
  這一層次建立在前兩層的基礎上,其核心在於「理解」一詞。 目標在於對復雜圖像中的各個對象完成語義級別的理解。這一層次的研究常常應用於:場景識別、圖像摘要生成及圖像語義回答等。
  而我研究的問題主要隸屬於底層特徵和中層語義特徵研究中的物體識別和場景標注問題。

人類的視覺工作模式是這樣的:
   首先,我們大腦中的神經元接收到大量的信息微粒,但我們的大腦還並不能處理它們。
   於是接著神經元與神經元之間交互將大量的微粒信息整合成一條又一條的線。
   接著,無數條線又整合成一個個輪廓。
   最後多個輪廓累加終於聚合我們現在眼前看到的樣子。
  計算機科學受到神經科學的啟發,也採用了類似的工作方式。具體而言,圖像識別問題一般都遵循下面幾個流程

  (1)獲取底層信息。獲取充分且清潔的高質量數據往往是圖像識別工作能否成功的關鍵所在
  (2)數據預處理工作,在圖像識別領域主要包括四個方面的技術:去噪處理(提升信噪比)、圖像增強和圖像修復(主要針對不夠清晰或有破損缺失的圖像);歸一化處理(一方面是為了減少開銷、提高演算法的性能,另一方面則是為了能成功使用深度學習等演算法,這類演算法必須使用歸一化數據)。
 巧擾 (3)特徵提取,這一點是該領域的核心,也是本文的核心。圖像識別的基礎是能夠提取出足夠高質量,能體現圖像獨特性和區分度的特徵。
  過去在10年代之前我們主要還是更多的使用傳統的人工特徵提取方法,如PCALCA等來提取一些賀蠢人工設計的特徵,主要的方法有(HOG、LBP以及十分著名的SIFT演算法)。但是這些方法普遍存在(a)一般基於圖像的一些提層特徵信息(如色彩、紋理等)難以表達復雜的圖像高層語義,故泛化能力普遍比較弱。(b)這些禪寬陪方法一般都針對特定領域的特定應用設計,泛化能力和遷移的能力大多比較弱。
  另外一種思路是使用BP方法,但是畢竟BP方法是一個全連接的神經網路。這以為這我們非常容易發生過擬合問題(每個元素都要負責底層的所有參數),另外也不能根據樣本對訓練過程進行優化,實在是費時又費力。
  因此,一些研究者開始嘗試把諸如神經網路、深度學習等方法運用到特徵提取的過程中,以十幾年前深度學習方法在業界最重要的比賽ImageNet中第一次戰勝了SIFT演算法為分界線,由於其使用權重共享和特徵降采樣,充分利用了數據的特徵。幾乎每次比賽的冠軍和主流都被深度學習演算法及其各自改進型所佔領。其中,目前使用較多又最為主流的是CNN演算法,在第四部分主要也研究CNN方法的機理。

  上圖是一個簡易的神經網路,只有一層隱含層,而且是全連接的(如圖,上一層的每個節點都要對下一層的每個節點負責。)具體神經元與神經元的作用過程可見下圖。

  在諸多傳統的神經網路中,BP演算法可能是性能最好、應用最廣泛的演算法之一了。其核心思想是:導入訓練樣本、計算期望值和實際值之間的差值,不斷地調整權重,使得誤差減少的規定值的范圍內。其具體過程如下圖:

  一般來說,機器學習又分成淺層學習和深度學習。傳統的機器學習演算法,如SVM、貝葉斯、神經網路等都屬於淺層模型,其特點是只有一個隱含層。邏輯簡單易懂、但是其存在理論上缺乏深度、訓練時間較長、參數很大程度上依賴經驗和運氣等問題。
  如果是有多個隱含層的多層神經網路(一般定義為大於5層),那麼我們將把這個模型稱為深度學習,其往往也和分層訓練配套使用。這也是目前AI最火的領域之一了。如果是淺層模型的問題在於對一個復雜函數的表示能力不夠,特別是在復雜問題分類情況上容易出現分類不足的弊端,深度網路的優勢則在於其多層的架構可以分層表示邏輯,這樣就可以用簡單的方法表示出復雜的問題,一個簡單的例子是:
  如果我們想計算sin(cos(log(exp(x)))),
  那麼深度學習則可分層表示為exp(x)—>log(x)—>cos(x)—>sin(x)

  圖像識別問題是物體識別的一個子問題,其魯棒性往往是解決該類問題一個非常重要的指標,該指標是指分類結果對於傳入數據中的一些轉化和扭曲具有保持不變的特性。這些轉化和扭曲具體主要包括了:
(1)噪音(2)尺度變化(3)旋轉(4)光線變化(5)位移

  該部分具體的內容,想要快速理解原理的話推薦看[知乎相關文章] ( https://www.hu.com/search?type=content&q=CNN ),
  特別是其中有些高贊回答中都有很多動圖和動畫,非常有助於理解。
  但核心而言,CNN的核心優勢在於 共享權重 以及 感受野 ,減少了網路的參數,實現了更快的訓練速度和同樣預測結果下更少的訓練樣本,而且相對於人工方法,一般使用深度學習實現的CNN演算法使用無監督學習,其也不需要手工提取特徵。

CNN演算法的過程給我的感覺,個人很像一個「擦玻璃」的過程。其技術主要包括了三個特性:局部感知、權重共享和池化。

  CNN中的神經元主要分成了兩種:
(a)用於特徵提取的S元,它們一起組成了卷積層,用於對於圖片中的每一個特徵首先局部感知。其又包含很關鍵的閾值參數(控制輸出對輸入的反映敏感度)和感受野參數(決定了從輸入層中提取多大的空間進行輸入,可以簡單理解為擦玻璃的抹布有多大)
(b)抗形變的C元,它們一起組成了池化層,也被稱為欠采樣或下采樣。主要用於特徵降維,壓縮數據和參數的數量,減小過擬合,同時提高模型的容錯性。
(c*)激活函數,及卷積層輸出的結果要經過一次激勵函數才會映射到池化層中,主要的激活函數有Sigmoid函數、Tanh函數、ReLU、Leaky ReLU、ELU、Maxout等。

  也許你會抱有疑問,CNN演算法和傳統的BP演算法等究竟有什麼區別呢。這就會引出區域感受野的概念。在前面我們提到,一個全連接中,較高一層的每個神經元要對低層的每一個神經元負責,從而導致了過擬合和維度災難的問題。但是有了區域感受野和,每個神經元只需要記錄一個小區域,而高層會把這些信息綜合起來,從而解決了全連接的問題。

  了解區域感受野後,你也許會想,區域感受野的底層神經元具體是怎麼聚合信息映射到上一層的神經元呢,這就要提到重要的卷積核的概念。這個過程非常像上面曾提到的「神經元與神經元的聯系」一圖,下面給大家一個很直觀的理解。

  上面的這個過程就被稱為一個卷積核。在實際應用中,單特徵不足以被系統學習分類,因此我們往往會使用多個濾波器,每個濾波器對應1個卷積核,也對應了一個不同的特徵。比如:我們現在有一個人臉識別應用,我們使用一個卷積核提取出眼睛的特徵,然後使用另一個卷積核提取出鼻子的特徵,再用一個卷積核提取出嘴巴的特徵,最後高層把這些信息聚合起來,就形成了分辨一個人與另一個人不同的判斷特徵。

  現在我們已經有了區域感受野,也已經了解了卷積核的概念。但你會發現在實際應用中還是有問題:
  給一個100 100的參數空間,假設我們的感受野大小是10 10,那麼一共有squar(1000-10+1)個,即10的六次方個感受野。每個感受野中就有100個參數特徵,及時每個感受野只對應一個卷積核,那麼空間內也會有10的八次方個次數,,更何況我們常常使用很多個卷積核。巨大的參數要求我們還需要進一步減少權重參數,這就引出了權重共享的概念。
   用一句話概括就是,對同一個特徵圖,每個感受野的卷積核是一樣的,如這樣操作後上例只需要100個參數。

  池化是CNN技術的最後一個特性,其基本思想是: 一塊區域有用的圖像特徵,在另一塊相似的區域中很可能仍然有用。即我們通過卷積得到了大量的邊緣EDGE數據,但往往相鄰的邊緣具有相似的特性,就好像我們已經得到了一個強邊緣,再擁有大量相似的次邊緣特徵其實是沒有太大增量價值的,因為這樣會使得系統里充斥大量冗餘信息消耗計算資源。 具體而言,池化層把語義上相似的特徵合並起來,通過池化操作減少卷積層輸出的特徵向量,減少了參數,緩解了過擬合問題。常見的池化操作主要包括3種:
分別是最大值池化(保留了圖像的紋理特徵)、均值池化(保留了圖像的整體特徵)和隨機值池化。該技術的弊端是容易過快減小數據尺寸,目前趨勢是用其他方法代替池化的作用,比如膠囊網路推薦採用動態路由來代替傳統池化方法,原因是池化會帶來一定程度上表徵的位移不變性,傳統觀點認為這是一個優勢,但是膠囊網路的作者Hinton et al.認為圖像中位置信息是應該保留的有價值信息,利用特別的聚類評分演算法和動態路由的方式可以學習到更高級且靈活的表徵,有望沖破目前卷積網路構架的瓶頸。

  CNN總體來說是一種結構,其包含了多種網路模型結構,數目繁多的的網路模型結構決定了數據擬合能力和泛化能力的差異。其中的復雜性對用戶的技術能力有較高的要求。此外,CNN仍然沒有很好的解決過擬合問題和計算速度較慢的問題。

   該部分的核心參考文獻:
《深度學習在圖像識別中的應用研究綜述》鄭遠攀,李廣陽,李曄.[J].計算機工程與應用,2019,55(12):20-36.

  深度學習技術在計算機圖像識別方面的領域應用研究是目前以及可預見的未來的主流趨勢,在這里首先對深度學習的基本概念作一簡介,其次對深度學習常用的結構模型進行概述說明,主要簡述了深度信念網路(DBN)、卷積神經網路(CNN)、循環神經網路(RNN)、生成式對抗網路(GAN)、膠囊網路(CapsNet)以及對各個深度模型的改進模型做一對比分析。

  深度學習按照學習架構可分為生成架構、判別架構及混合架構。
其生成架構模型主要包括:
  受限波爾茲曼機、自編碼器、深層信念網路等。判別架構模型主要包括:深層前饋網路、卷積神經網路等。混合架構模型則是這兩種架構的集合。深度學習按數據是否具有標簽可分為非監督學習與監督學習。非監督學習方法主要包括:受限玻爾茲曼機、自動編碼器、深層信念網路、深層玻爾茲曼機等。
  監督學習方法主要包括:深層感知器、深層前饋網路、卷積神經網路、深層堆疊網路、循環神經網路等。大量實驗研究表明,監督學習與非監督學習之間無明確的界限,如:深度信念網路在訓練過程中既用到監督學習方法又涉及非監督學習方法。

[1]周彬. 多視圖視覺檢測關鍵技術及其應用研究[D].浙江大學,2019.
[2]鄭遠攀,李廣陽,李曄.深度學習在圖像識別中的應用研究綜述[J].計算機工程與應用,2019,55(12):20-36.
[3]逄淑超. 深度學習在計算機視覺領域的若干關鍵技術研究[D].吉林大學,2017.
[4]段萌. 基於卷積神經網路的圖像識別方法研究[D].鄭州大學,2017.
[5]李彥冬. 基於卷積神經網路的計算機視覺關鍵技術研究[D].電子科技大學,2017.
[6]李衛. 深度學習在圖像識別中的研究及應用[D].武漢理工大學,2014.
[7]許可. 卷積神經網路在圖像識別上的應用的研究[D].浙江大學,2012.
[8]CSDN、知乎、機器之心、維基網路

⑷ 哪些神經網路可以用在圖像特徵提取上

BP神經網路、離散Hopfield網路、LVQ神經網路等等都可以。

1.BP(Back Propagation)神經網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hidden layer)和輸出層(output layer)。
2.Hopfiled神經網路是一種遞歸神經網路,由約翰·霍普菲爾德在1982年發明。Hopfield網路是一種結合存儲系統和二元系統的神經網路。它保證了向局部極小的收斂,但收斂到錯誤的局部極小值(local minimum),而非全局極小(global minimum)的情況也可能發生。Hopfiled網路也提供了模擬人類記憶的模型。
3.LVQ神經網路由三層組成,即輸入層、隱含層和輸出層,網路在輸入層與隱含層間為完全連接,而在隱含層與輸出層間為部分連接,每個輸出層神經元與隱含層神經元的不同組相連接。隱含層和輸出層神經元之間的連接權值固定為1。輸入層和隱含層神經元間連接的權值建立參考矢量的分量(對每個隱含神經元指定一個參考矢量)。在網路訓練過程中,這些權值被修改。隱含層神經元(又稱為Kohnen神經元)和輸出神經元都具有二進制輸出值。當某個輸入模式被送至網路時,參考矢量最接近輸入模式的隱含神經元因獲得激發而贏得競爭,因而允許它產生一個「1」,而其它隱含層神經元都被迫產生「0」。與包含獲勝神經元的隱含層神經元組相連接的輸出神經元也發出「1」,而其它輸出神經元均發出「0」。產生「1」的輸出神經元給出輸入模式的類,由此可見,每個輸出神經元被用於表示不同的類。

⑸ 人工神經網路可以解決什麼行業問題,怎麼解決,有什麼效果

人工神經網路可以應用在許多行業,解決各種問題,主要包括:
1. 圖像識別:人工神經網路可以用於圖像分類、目標檢測、語義分割等,廣泛應用於自動駕駛、醫療圖像舉明分析、人臉識別等領域。利用深度學習演算法可以實現高精度的圖像悶宴識別。
2. 自然語言處理:人工神經網路可用於機器翻譯、文本分類、情感分析、語義理解等,應用於聊天機器人、搜索引擎等。採用深度學習方法可以實現上下文理解和詞義消歧。
3.預測與決策:人工神經網路可以用於股票預測、商品銷量預測、疾病預測、推薦系統等,幫助企業進行數據分析與決策。
4.異常檢測:人工神經網路可用於欺詐檢測、網路入侵檢測、工業質量檢測等,通過模型學習大量樣本,可以高效識別異常數據。
5.控制與優化:人工神經網路可用於無人車控制、工廠自動化控制、能源供需預測與優化等,實現復雜問題的控制與優化。
人工神經網路主要通過深度學習演算法來訓練神經網路模型,可以自動學習特徵和模式,對樣本進行分類或預測。相比傳統演算法,人工神經網路可以實現更高精度的識別與決策,廣泛應用於各行業,獲取很好的效果。許多企業已經在關鍵業務流程中集成人工神經網路,提高生產力與產品體驗。
總的來說,人工正罩告神經網路是一個強大的機器學習工具,可以幫助企業利用海量數據進行自動化分類、預測與決策,從而優化運營效率,提高產品智能,取得競爭優勢。人工神經網路正在改變許多行業的未來,帶來巨大的技術和商業影響。
希望以上解釋可以概括人工神經網路在各行業的應用與效果。

閱讀全文

與神經網路在圖像處理中的應用相關的資料

熱點內容
手機版ygopro聯機工具 瀏覽:259
為什麼斐訊網站登不上 瀏覽:420
查閱系統中的部門文件 瀏覽:213
資料庫怎麼傳到另一個電腦 瀏覽:802
帝國網站b2b 瀏覽:198
ios6越獄後舊版本軟體下載 瀏覽:694
編程貓軟體如何顯示猜對次數 瀏覽:89
javaword分詞器 瀏覽:909
文件名與字元的關系 瀏覽:607
數據線應該插到筆記本的哪裡 瀏覽:580
拓爾思數據中心有多少台伺服器 瀏覽:330
sourceinsight文件格式編碼 瀏覽:326
多游鬥地主網站為什麼打不開 瀏覽:994
找不到文件了如何重裝 瀏覽:18
cad自動緩存文件位置 瀏覽:729
請示文件聯系方式寫在哪裡 瀏覽:296
在網路上別人拖欠工資怎麼辦 瀏覽:866
智能感測網路 瀏覽:925
求生之路2最高版本補丁 瀏覽:607
聯想電腦win10系統優化 瀏覽:115

友情鏈接