㈠ 異構網路的介紹
異構網路(Heterogeneous Network)是一種類型的網路,其是由不同製造商生產的計算機,網路設備和系統組成的,大部分情況下運行在不同的協議上支持不同的功能或應用。關於異構網路的研究最早追溯到1995的美國加州大學伯克利分校發起的BARWAN(Bay Area Research Wireless Access Network)項目,該項目負責人R.H. Katz在文獻1中首次將相互重疊的不同類型網路融合起來以構成異構網路,從而滿足未來終端的業務多樣性需求。為了可以同時接入到多個網路,移動終端應當具備可以接入多個網路的介面,這種移動終端被稱為多模終端。由於多模終端可以接入到多個網路中,因此肯定會涉及到不同網路之間的切換,與同構網路(Homogeneous Wireless Networks)中的水平切換(Horizontal Handoff, HHO)不同,這里稱不同通信系統之間的切換為垂直切換(Vertical Handoff,VHO)。在此後的十幾年中,異構網路在無線通信領域引起了普遍的關注,也成為下一代無線網路的發展方向。很多組織和研究機構都對異構網路進行了深入廣泛的研究,如3GPP、MIH、ETSI、Lucent實驗室、Ericsson研究所、美國的Georgia理工大學和芬蘭的Oulu大學等。下一代無線網路將是無線個域網(如Bluetooth)、無線區域網(如Wi-Fi)、無線城域網(如WiMAX)、公眾移動通信網(如2G、3G)以及Ad Hoc網路等多種接入網共存的異構無線網路2。
㈡ 802.21是什麼
INTEL說了算!目前還沒實際應用起來!看支持如何了。具體還要看INTEL的發展方向。國內這個目前沒有.空白!!噢..對了,樓主可以去中國通信論壇看下,那裡都是從事通信業的從業人員的交流集散地.呵呵。俺以前也混那裡的。www.c114.net
1 IEEE 802.21簡介
無線通信網路如此繁多,對於運營商和用戶來說不見得完全是一件好事。對於用戶來說,必須攜帶若干個不同的無線通信終端才能保證在不同的環境中保持通暢的信息服務;而對運營商來說則需要建立不同的「無所不在」的網路提供給用戶。這導致網路維護費用的劇增和平均收益的降低。因此,保持異構網路之間漫遊和通信就是一件非常緊急的需求。慶幸的是,很多通信專家們注意到了這個問題。IEEE 802.21工作組就致力於用標準的形式將異構網路之間無縫切換進行規范,以消除未來可能的混亂狀態,達到運營商和用戶的雙贏。
不同類型的802網路有不同的媒體訪問控制(MAC)。高層移動性管理協議,例如Mobile IP也可以支持異構網路的切換。但是Mobile IP把下層網路視作透明,沒有從802網路搜集有關底層網路情況等相關信息的途徑。因此,把Mobile IP用作漫遊的方式存在網路發現和網路時延等問題,會造成持續幾秒的中斷。這對於電信級的網路服務來說是難以忍受的。因此,有必要在二層協議和三層協議之間開發一套與媒質無關的切換技術來提供異構網路切換服務。
IEEE工作組於2003年開始討論有關「媒質獨立切換業務(Media-independent Handover Services)」標準的需求,於2004年3月正式開始運轉,並於2004年9月開始徵集有關提案。預計今年將會有第一版的草案發布。
2 協議結構
在802.21標准中,假設移動節點(MN,Mobile Node)為多模節點,可以支持以下多個網路介面標准:
◆基於有線類型,如乙太網的802.3標准;
◆IEEE 802.xx家族:802.11、802.15、802.16、802.20;
◆其他的蜂窩通信的空中無線介面:3GPP、3GPP2。
在802標准家族中的切換有802.3、802.11、802.16異構網路之間的切換以及802.11網路之間通過ESS(Extend Service Set)的切換。標准也提供802標准和非802蜂窩網路(如3GPP和3GPP2)之間的快速切換方法,主要有802.3/802.11/802.16與蜂窩網路之間的切換。2.5層在各標準的MAC之上,並將各種不同的MAC層向上統一為一個介面。2.5層從二層獲得觸發事件或者信息來完成不同的切換進程。2.5層對物理層和MAC層以及上層實體,如Mobile IP,都分別定義了業務接入點(SAP,Service Access Point)。2.5層為上層業務監視和控制不同鏈路層的狀態。
3 功能需求
IEEE 802.21工作組致力於完成以下內容的標准化工作。
(1)業務連續性(Service Continuity)
業務連續性要求在同一網路內部和不同網路之間切換時發生。標准要求提供無縫切換能力,即在切換時對會話無損的切換。
(2)應用類型(Application Class)
對於實時業務、時延敏感/不敏感業務、盡力而為業務進行區分服務,並在各網路之間完成映射。
(3)服務質量(QoS)
由於各類網路對QoS保障的機制不同,甚至有些網路缺少QoS保障機制,在發生網路間切換的時候,有必要建立一套QoS映射機制以確保業務質量。對於無法保證服務質量的網路,業務可能會被降級處理。
(4)網路發現(Network Discovery)
2.5層協議應通過下層協議觸發或獲取信息來協助高層完成網路的發現。
(5)網路選擇(Network Selection)
在切換進程初始化的時候,標准應當可以提供網路的最優選擇,其中包括獲得不同網路的鏈路接入和使用信息、鏈路質量、開銷、安全機制、供應商信息等。
(6)安全性(Security)
標准需要對不同網路系統的安全性提供一套映射的方法。單項接入技術的安全性需要得到保證而不會因為切換的發生得到損失。
(7)電源管理(Power Management)
標准應對網路掃描進程提供有效的電源管理方案。這就需要設計一個好的睡眠機制和切換機制。
802.21說明:
802.21是英特爾主導的無線介面標准,目的是讓用戶在使用網路時,能跨越多種異構網路實現無間斷的連接,使Wi-Fi、WiMAX及3G網路之間能進行無縫切換。用戶就算使用內置802.21技術晶元的手機,也會自動感知並切換網路,不會因網路技術的不同而被迫中斷通信。
802.21標準的提出試圖填補現行WLAN、WiMAX與蜂窩網路間的空隙,並計劃於今年下半年定案。英特爾希望能藉助802.21實現讓3G、WiMAX、Wi-Fi、UWB、BlueTooth和RFID等同時共存並緊密連接的混合網路(MxN)。要實現WLAN、3G到WiMAX之間的語音與數據傳輸,且能無縫整合,其關鍵就在於填補這些無線標准空隙的無線介面標准IEEE802.21。
IEEE802.21標准在MIH並沒有做任何的傳遞處理,對現有的PHY和MAC層沒有做任何修改,也不需要上層新的移動協議的支持。可以這樣認為,IEEE802.21標准建立了一套獨立於介質之上的切換方案,在融合WLAN、WMAN和蜂窩網路的過程中將扮演重要角色。
IEEE802.21標准主要針對無縫切換能力、區分業務的QoS保障、最優網路選擇、安全機制和電源管理五個方面來定義。通過IEEE802.21標准可以感知周圍現在哪個網路是可用的,而且能迅速改變網路的使用狀態,使客戶端設備在網間漫遊時能自動選擇最好的網路連接類型,無縫切換話路,而無需用戶干預。然而,IEEE802.21目前面臨來自UMA的競爭,同時,在單一行動裝置上整合多重無線電所面臨的干擾、功耗及成本挑戰,也是英特爾發展MxN亟待解決的課題。
㈢ 什麼是異構網路,什麼是同構網路具體的概述
隨著感測器技術、 嵌入式技術、 分布式信息處理技術和無線通信技術的發展, 以大量的具有微處理能力的微型感測器節點組成的無線感測器網路(WSN)逐漸成為研究熱點問題。
與傳統無線通信網路Ad Hoc網路相比, WSN的自組織性、 動態性、 可靠性和以數據為中心等特點, 使其可以應用到人員無法到達的地方, 比如戰場、 沙漠等。 因此, 可以斷定未來無線感測器網路將有更為廣泛的前景。
無線感測器網路
無線感測器網路(Wireless Sensor Networks, WSN)是一種分布式感測網路,由大量的靜止或移動的感測器以自組織和多跳的方式構成的無線網路,以協作地感知、採集、處理和傳輸網路覆蓋地理區域內被感知對象的信息,並最終把這些信息發送給網路的所有者。感測器、感知對象和觀察者構成了無線感測器網路的三個要素。
無線感測器網路所具有的眾多類型的感測器,可探測包括地震、電磁、溫度、濕度、雜訊、光強度、壓力、土壤成分、移動物體的大小、速度和方向等周邊環境中多種多樣的現象。潛在的應用領域可以歸納為: 軍事、航空、防爆、救災、環境、醫療、保健、家居、工業、商業等領域。
與傳統有線網路相比,無線感測器網路技術具有很明顯的優勢特點,主要的要求有: 低能耗、 低成本、 通用性、 網路拓撲、 安全、 實時性、 以數據為中心等。
無線感測器網路系統的典型結構
採用同構網路實現遠程監測的無線感測器網路系統典型結構, 由感測器節點、 匯聚節點、 伺服器端的PC和客戶端的PC四大硬體環節組成, 各組成環節功能如下。
圖1 遠程監測無線感測器網路系統結構框圖
感測器節點
部署在監測區域(A區), 通過自組織方式構成無線網路。 感測器節點監測的數據沿著其它節點逐跳進行無線傳輸, 經過多跳後達到匯聚節點(B區)。
匯聚節點
是一個網路協調器, 負責無線網路的組建, 再將感測器節點無線傳輸進來的信息與數據通過SCI( 串列通信介面)傳送至伺服器端PC。
伺服器端PC
是一個位於B區的管理節點, 也是獨立的Internet網關節點。 在LabVIEW軟體平台上面有兩個軟體: 一是對感測器無線網路進行監測管理的軟體平台VI, 即一個監測感測器無線網路的虛擬儀器VI; 二是Web Server軟體模塊和遠程面板技術(Remote Panel), 可實現感測器無線網路與Internet的連接。
客戶端PC
客戶端PC上無需進行任何軟體設計, 在瀏覽器中就可調用伺服器PC中無線感測器網路監測虛擬儀器的前面板, 實現遠程異地(C區)對感測器無線網路(A區)的監測與管理。
無線感測器網路中的感測器節點
1. 感測器及其調理電路
應根據無線感測器網路所在的地區環境特點來選擇感測器, 以適應環境溫度變化范圍、 尺寸體積等特殊要求。 感測器所配接的調理電路將感測器輸出的變化量轉換成能與A/D轉換器相適配的0~2.5 V或0~5 V的電壓信號。 當處於無電網供電地區時, 感測器及其調理電路都應是低功耗的。
2. 數據採集及A/D轉換器與微處理器系統
感測器節點中的計算機系統是低功耗的單片微處理器系統, 可以適應遠離測試中心、 偏遠地區惡劣環境的工作條件。 如美國德克薩斯州儀器(TI)公司生產的MSP430-F149A超低功耗混合信號處理器(Mixed Signal Processor), 它內部自帶采樣/保持器和12位A/D轉換器, 可對信號進行採集、 轉換以及對全節點系統進行指令控制和數據處理。
3. 射頻模塊
射頻模塊接收外部無線指令並將感測器檢測到的被測參量數據信息無線發送出去, 如TI公司的CC2420無線收發晶元。
㈣ 異構網路的網路選擇演算法的研究
異構網路中無線資源管理的一個重要研究方向就是網路選擇演算法,網路選擇演算法的研究很廣泛,這里給出了幾個典型的無線網路選擇演算法的類別。 預切換可以有效的減少不必要的切換,並為是否需要執行切換做好准備。通常情況下可以通過當前接收信號強度來預測將來接收信號強度的變化趨勢,來判斷是否需要執行切換。
文獻 中利用多項式回歸演算法對接收信號的強度進行預測,這種方法的計算復雜度較大。文獻 中,利用模糊神經網路來對接收信號強度進行預測,模糊神經網路的演算法最大的問題,收斂較慢,而且計算的復雜度高。文獻 中,利用的是最小二乘演算法(LMS)來預測接收的信號強度,通過迭代的方法,能夠達到快收斂,得到較好的預測。還有在文獻 中,直接採用接收信號強度的斜率來預測接收信號強度,用來估計終端在該網路中的生存時間,但是這種方法太簡單,精度不是很高。 在垂直切換的過程中,對於相同的切換場景,通常會出現現在的已出現過的切換條件,對於其垂直切換的結果,可以應用到當前條件下,這樣可以有效避免的重新執行切換決策所帶來的時延。
文獻[33]中,提出利用用戶連接信息(User Connection Profile,UCP)資料庫用來存儲以前的網路選擇事件。在終端需要執行垂直切換時,首先檢查資料庫中是否存在相同的網路選擇記錄,如果存在可以直接接入最合適的網路。在文獻[34]中,提出了將切換到該網路的持續服務時間和距離該網路的最後一次阻塞時間間隔作為歷史信息記錄下來,根據這些信息,選擇是否有必要進行切換。 由於用戶對網路參數的判斷往往是模糊的,而不是確切的概念,所以通常採用模糊邏輯對參數進行定量分析,將其應用到網路選擇中顯得更加合理。模糊系統組成通常有3個部分組成,分別是模糊化、模糊推理和去模糊化。對於去模糊化的方法通常採用中心平均去模糊化,最後得到網路性能的評價值,根據模糊系統所輸出的結果,選擇最適合的網路。
通常情況下,模糊邏輯與神經網路是相互結合起來應用的,通過模糊邏輯系統的推理規則,對神經網路進行訓練,得到訓練好的神經網路。在垂直切換的判決的時候,利用訓練好的神經網路,輸入相應網路的屬性參數,選擇最適合的網路接入。
基於模糊邏輯和神經網路的策略,可以對多種因素(尤其動態因素)進行動態地控制,並做出自適應的決策,可以有效提高網路選擇的合理性,但該策略最大的缺點是,演算法的實現較為復雜,在電池容量和處理能力均受限的移動設備上是不合適的。 在異構網路選擇中,博弈論是一個重要的研究方向。在博弈論的模型中,博弈中的參與者在追求自身利益最大化的同時,保證自身付出的代價盡量小。參與者的這兩種策略可以通過效用函數和代價函數來衡量。因此通過最大化效用函數和最小化代價函數,來追求利益的最大化。
文獻[36]中提出一種基於博弈論的定價策略和網路選擇方案,該方案中服務提供商(Service Providers,SPs)為了提高自己的利潤需要面臨競爭,它是通過用戶間的合作或者非合作博弈來獲得,在實際的異構網路場景下,用戶和服務提供商SPs之間可以利用博弈模型來表示。Dusit Niyato在文獻[37]中,通過競價機制來進行異構網路資源的管理,這里將業務分成兩種類型,一種是基本業務,另一種類似高質量業務,基本業務的價格是固定的,而高質量業務的價格是動態變化的,它是隨著服務提供商的競爭和合作而變化的。因此這里從合作博弈和非合作博弈兩方面來討論定價機制。Dusit Niyato在文獻[38]中基於進化博弈理論,來解決在帶寬受限情況下,用戶如何在重疊區域進行網路選擇。 網路選擇的目標通常是通過合理分配無線資源來最大化系統的吞吐量,或者最小化接入阻塞概率等,這樣就會涉及網路優化問題。
網路選擇演算法往往是一種多目標決策,用戶希望得到好的服務質量、價格便宜的網路、低的電池功率消耗等。對於多目標決策演算法,通常是不可能使得每個目標同時達到最優,通常的有三種做法:其一,把一些目標函數轉化為限制條件,從而減少目標函數數目;其二,將不同的目標函數規范化後,將規范化後的目標函數相加,得到一個目標函數,這樣就可以利用最優化的方法,得到最優問題的解;其三,將兩者結合起來使用。例如文獻[39]中,採用的是讓系統的帶寬受限,最大化網路內的所有用戶的手機使用時間,即將部分目標函數轉化為限制條件。文獻[40]中,採用的是讓用戶的使用的費用受限,最大化用戶的利益和最小化用戶的代價,這里採用的是上面介紹的第三種方法。 基於策略的網路選擇指的是按照預先規定好的策略進行相應的網路操作。在網路選擇中,通常需要考慮網路負荷、終端的移動性和業務特性等因素。如對於車載用戶通常選擇覆蓋范圍大的無線網路,如WCDMA、WiMAX等;對於實時性要求不高的業務,並且非車載用戶通常選擇WLAN接入。這些均是通過策略來進行網路選擇。
文獻[41, 42]提出了基於業務類型的網路選擇演算法,根據用戶的業務類型為用戶選擇合適的網路。文獻[35]提出基於負載均衡的網路選擇演算法,用戶選擇接入或切換到最小負載因子的網路。[43]提出了一種考慮用戶移動性和業務類型的網路選擇演算法。 多屬性判決策略(Multiple Attribute Decision Making,MADM)是目前垂直切換方面研究最多的領域。多屬性判決策略主要分為基於代價函數的方法和其他方法。
基於代價函數的方法
代價函數一般有兩種構造形式,一種是多屬性參數值的線性組合,如(2.1)式所示;另一種是多屬性參數值的權重指數乘積或者是屬性參數值的對數線性組合,如(2.2)式所示。
(2.1)
(2.2)
其中代表規范化的第個網路的第個屬性值,代表第個屬性的權值。對於屬性的規范化,首先對屬性進行分類,分為效益型、成本型等,然後根據不同的類型的,對參數進行歸一化,採用最多的是線性規范化、極差規范化和向量變換法。關於權值的確定可以分為簡單賦權法(Simple Additive Weighting,SAW)、層次分析法(Analytic Hierarchy Process,AHP)、熵權法、基於方差和均值賦權法。
(1) SAW:用戶根據自己的偏好,確定每個屬性的重要性,通常給出每個參數取值的具體參數值。
(2) AHP:首先分析評價系統中各要素之間關系,建立遞階層次結構;其次對同一層次的各要素之間的重要性進行兩兩比較,構造判斷矩陣;接著由每層判斷矩陣計算相對權重;最後計算系統總目標的合成總權重。
(3) 熵權法:通過求解候選網路中的同一屬性的熵值,熵值的大小表明網路同一屬性的參數值的差異,差別越大,說明該屬性對決策影響越大,相應權值的取值就越大。
(4) 基於方差和均值賦權法:通過求解候選網路中同一屬性參數的均值和方差,結合這兩個參數確定該屬性的重要性程度值,然後再對其進行歸一化,得到每個屬性的參數值。
其他方法
(1) 基於方差和均值賦權法:通過求解候選網路中同一屬性參數的均值和方差,結合這兩個參數確定該屬性的重要性程度值,然後再對其進行歸一化,得到每個屬性的參數值。
(2) 逼近理想解排序法(TOPSIS):首先對參數進行歸一化,從網路的每組屬性參數值里選擇最好的參數組成最優的一組屬性參數,同樣也可以得到最差的一組屬性參數。將每個網路與這兩組參數比較,距離最優參數組越近,並且與最差組越遠,該網路為最合適的網路。
(3) 灰度關聯分析法(GRA):首先對參數進行歸一化,再利用GRA方法,求得每個網路的每個屬性的關聯系數,然後求出每個網路總的關聯系數。根據每個網路總的關聯系數,選擇最適合的網路。
(4) 消去和選擇轉換法(ELECTRE):首先對參數進行歸一化,構造加權的規范化矩陣,確定屬性一致集和不一致集。然後計算一致指數矩陣和劣勢矩陣,最後得到一致指數矩陣和不一致指數矩陣。根據這兩個矩陣,確定網路的優劣關系,選擇最適合的網路。
VIKOR:首先對參數進行歸一化,首先確定最優和最差屬性參數組,然後計算得到每個網路屬性的加權和屬性中最大的參數值,然後利用極差規范化對網路的加權和以及最大屬性值進行歸一化,最後利用歸一化的參數進行加權求和,依據這個值,選擇最合適的網路。
㈤ 什麼是異構網路
異構網路(Heterogeneous Network)是一種類型的網路,其是由不同製造商生產的計算機,網路設備和系統組成的,大部分情況下運行在不同的協議上支持不同的功能或應用。
所謂異構是指兩個或以上的無線通信系統採用了不同的接入技術,或者是採用相同的無線接入技術但屬於不同的無線運營商。利用現有的多種無線通信系統,通過系統間融合的方式,使多系統之間取長補短是滿足未來移動通信業務需求一種有效手段,能夠綜合發揮各自的優勢。由於現有的各種無線接入系統在很多區域內都是重疊覆蓋的,所以可以將這些相互重疊的不同類型的無線接入系統智能地結合在一起,利用多模終端智能化的接入手段,使多種不同類型的網路共同為用戶提供隨時隨地的無線接入,從而構成了如圖所示的異構無線網路。
㈥ 異構網路的異構網路的背景介紹
圖1.1中給出了移動通信技術的發展過程,可以看出隨著技術的改進,數據傳輸速率有著顯著的提高,為用戶提供大數據量的多媒體通信業務提供了堅實基礎。到目前為止,移動通信系統已經發展到第四代,下面將簡單介紹這四代移動通信的發展歷程。
第一代模擬蜂窩系統(1G)開始於上個世紀80年代被用於大規模民用,主要用於提供模擬語音業務,採用的是模擬語音調制技術和頻分多址技術(Frequency Division Multiple Access,FDMA),數據傳輸速率約為2.4kbps。其中代表性的系統有北美的高級行動電話業務(Advanced Mobile Phone Service,AMPS)、英國的全入網通信系統技術(Total Access Communications System,TACS)和北歐的行動電話(Nordic Mobile Telephone,NMT)等等。由於受到傳輸帶寬的限制,不能進行長途漫遊,僅是一種區域性的移動通信系統。另外第一代的通信系統的缺點還包括制式太多而且互不兼容、容量有限、保密性差和通信質量不高等。因此促使了第二代數字移動通信系統(2G)的發展。
第二代數字移動通信系統完成了從模擬到數字的轉變,從而為用戶提供數字語音業務。第二代移動通信技術可以分成兩種,第一種是基於時分多址接入(Time Division Multiple Access,TDMA)的全球數字移動通信系統(Global System for Mobile,GSM)和基於碼分多址接入(Code Division Multiple Access,CDMA)的IS-95系統(例如CDMA one)。
第三代移動通信系統(3G)是由日益成熟的第二代移動通信系統發展而來,其目的是提供高速數據蜂窩移動通信技術。主要的3G技術標准有四個:歐洲電信標准協會(European Telecommunications Standard Institute,ETSI)提出的WCDMA(Wideband CDMA)、北美提出的從CDMA one演進而來的CDMA2000、具有中國知識產權的時分同步的碼分多址技術(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA),和在2007年國際電信聯盟(International Telecommunication Union,ITU)會議上通過的全球微波互聯接入(Worldwide Interoperability for Microwave Access,WiMAX)。第三代移動通信的最高數據傳輸速率可以達到2Mbps,因此可以提供相當高速的數據傳輸業務,例如多媒體、視頻和數據等。
長期演進(Long Term Evolution,LTE)項目是3G的演進,採用的主要技術是正交頻分復用(Orthogonal Frequency Division Multiplexing,OFDM)和MIMO(Multiple-Input Multiple-Out-put),能夠在20MHz的帶寬下提供上行50Mbps和下行100Mbps的峰值速率。LTE又被成為3.9G移動通信技術。LTE-Advanced是LTE的升級版,它被稱為4G的標准,它有兩種制式,一種是TDD,TD-SCDMA可以演化成TDD制式,並且HSPA+(High Speed Packet Access)直接進入LTE,另一種是FDD制式,WCDMA可以演進成FDD制式。
第四代移動通信系統(4G)除了要提供更高的帶寬外,還要保證任何人在任何時間、任何地點以任何方式與任何人進行通信,用戶無需考慮網路傳輸的實現細節。從GSM到第四代,所有的技術不可能一夜間都實現,這些技術將會同時存在為用戶提供服務。為了實現第四代移動通信的目標,就需要將這些不同的無線通信系統融合在一起,形成一個異構無線網路(Heterogeneous Wireless Networks,HWNs)通信系統,從而為用戶提供無縫切換和服務質量(Quality of Service,QoS)保證。因此下一代移動通信網路將是異構網路,異構網路的融合是下一代網路研究的熱點,也是本文研究的主要內容。
寬頻無線接入技術(Broadband Wireless Access,BWA)是繼1990年攜帶型無線電話和2000年Wi-Fi(Wireless Fidelity)出現之後的第三次無線革命,寬頻無線接入技術是在廣域上提供高速無線互聯網接入或者計算機網路接入的技術。寬頻無線接入技術的數據速率大致相當於一些有線網路,如非對稱數字用戶環路(Asymmetric Digital Subscriber Line,ADSL)或者電纜數據機,因此它通常是有線接入網路的重要補充。幾種重要的寬頻無線接入技術包括WLAN(Wireless Local Area Network)、WiMAX技術和WiBro(Wireless Broadband)等。WLAN通過擴頻或者OFDM等技術,來連接兩個或多個終端設備,並通過接入點來連接到寬頻互聯網上,大部分的WLAN技術是基於IEEE802.11標准。WLAN的優勢包括其費用很低和傳輸速度快。由於WLAN工作在非授權頻段,因此WLAN的發射功率很小,它覆蓋范圍也只有百米左右,能提供用戶在小范圍內移動時可以連接到網路上。而WiMAX可以在大范圍內提供高速數據業務,傳輸速率達到30至40兆比特每秒,2011年提高到了1Gbit/s,覆蓋的半徑最大可以達到50km。另外WiMAX可以支持一些低速移動的用戶,而且能夠提供多種多樣的服務,其資費也較WLAN高。由於BWA具有建網快、運營成本低、維護方便等優勢,因此它的發展速度非常迅速,為推動無處不在的互聯網接入和加強公共服務奠定重要的基礎。 表1.1給出了三種寬頻無線接入技術的主要參數,即WLAN、WiMAX和WiBro ;表1.2給出了三種3G技術的主要參數,即UMTS(Universal Mobile Telecommunications System)、EV-DO(Evolution dataOnly)以及HSDPA(High Speed Dlink Packet Access) 。比較這兩張表可以看出BWA與3G技術差別很大,例如BWA支持的數據傳輸速率幾十兆比特每秒,而3G只有幾兆比特每秒;從覆蓋范圍可以看出,3G網路的覆蓋范圍要大於BWA網路;從移動性還可以看出3G網路支持高速移動的用戶。因此可以看出每個網路都有它的優點和缺陷。
表1.1寬頻無線接入技術的主要參數 WLAN WiMAX WiBro 峰值速率 802.11a, g=54 Mbps DL:70 Mbps DL:18.4 Mbps 802.11b=11Mbps UL:70 Mbps UL:6.1 Mbps 帶寬 20MHz 5-6GHz 9MHz 多址方式 CSMA/CA OFDM/OFDMA OFDMA 雙工方式 TDD TDD TDD 移動性 低 低 低 覆蓋區域 小 中等 大 協議標准 IEEE802.11x 802.16 TTA&802.16e 目標市場 家庭/企業 家庭/企業 家庭/企業 表1.2 3G技術的主要參數 UMTS EV-DO HSDPA 峰值速率 DL:2 Mbps DL:3.1 Mbps DL:14 Mbps UL:2 Mbps UL:1.2 Mbps UL:2 Mbps 帶寬 5MHz 1.25GHz 5MHz 多址方式 CDMA CDMA CDMA 雙工方式 FDD FDD FDD 移動性 高 高 高 覆蓋區域 大 大 大 協議標准 3GPP 3GPP 3GPP 目標市場 公共 公共 公共 下一代無線網路是異構無線網路融合的重要原因是:基於異構網路融合,可以根據用戶的特點(例如車載用戶)、業務特點(例如實時性要求高)和網路的特點,來為用戶選擇合適的網路,提供更好的QoS。一般來說,廣域網覆蓋范圍大,但是數據傳輸速率低,而區域網正好相反。因此在實際應用中,多模終端可以根據自身的業務特點和移動性,來選擇合適的網路接入。與以往的同構網路不同,在異構網路環境下,用戶可以選擇服務代價小,同時又能滿足自身需求的網路進行接入。這是由於這些異構網路之間具有互補的特點,才使異構網路的融合顯得非常重要。因此一些組織提出了不同的網路融合標准,這些組織有3GPP(The 3rd Generation Partnership Project)、MIH(The IEEE 802.21 Media Independent Handover working group)和ETSI(The European Telecommunications Standards Institute)。
無線資源管理(Radio Resource Management,RRM)是異構網路中的一個重要研究課題,RRM的目標是高效利用受限的無線頻譜、傳輸功率以及無線網路的基礎設施。RRM技術包括呼叫接入控制(Call Admission Control,CAC)、水平或者垂直切換、負載均衡、信道分配和功率控制等。3GPP提出一種協同無線資源管理技術(Common Radio Resource Management,CRRM),它是通過利用CRRM伺服器對不同接入網路信息進行監測,合理的調度異構網路中的無線資源。除了協同無線資源管理演算法外,還有聯合無線資源管理演算法(Joint Radio Resource Management,JRRM)。這些技術實際上都是為異構網路提供統一的管理平台,以達到合理利用無線資源的目的。
網路選擇演算法是無線資源管理中一個研究熱點,網路選擇演算法通常可以分為呼叫接入網路選擇演算法和垂直網路切換選擇演算法。同構網路的接入和切換主要考慮接收信號的強度,而在異構網路中需要考慮不同接入網路之間的差異,因此需要考慮的因素很多,接收信號的強度只是其中的一個影響因素,其他因素如數據傳輸速率、價格、覆蓋范圍、實時性和用戶的移動性等。這些都是從用戶角度考慮的,如果從網路端考慮,就會涉及到提高系統的吞吐量,降低阻塞率以及均衡負載。因此網路選擇對於異構網路的融合起到了至關重要的影響。本文接下來部分將主要討論異構網路系統模型、無線資源管理、網路性能優化以及網路選擇演算法。
㈦ 異構網路的異構網路模型
圖2.1給出了一種異構網路模型。不同類型的網路,通過網關連接到核心網,最後連接到Internet網路上,最終融合成為一個整體。異構網路融合的一個重要問題是這些網路以何種方式來進行互連,為異構無線網路資源提供統一的管理平台。為了說明異構網路的融合結構,這里給出一種特定的異構網路場景,它是由無線廣域網(Wireless Wide Area Network,WWAN)(例如CDMA2000)和WLAN(例如IEEE802.11)組成的異構網路系統,如圖2.2所示。
一個CDMA2000網路可以分成無線接入網(Radio Access Network,RAN)和核心網路(Core Network,CN)兩部分。RAN包括一些無線技術實體,如基站控制器(Base Station Controller,BSC)和基站收發設備(Base Transceiver Station,BTS),來負責無線資源的管理。CN通常包括移動交換中心(Mobile Switching Center,MSC)來實現電路交換方式、分組數據服務節點(Packet Data Serving Node,PDSN)來實現包交換方式和網路交互功能(Inter-working Function,IWF)來為包交換和電路交換提供連接。CN負責呼叫管理和建立連接。在WLAN中,移動終端(Mobile Terminals,MTs)和接入點(Access Point,AP)之間進行通信。AP在WLAN中實現物理和數據鏈路層的功能,也充當無線路由器來執行網路層的功能,為WLAN與其他網路提供連接。
在如圖2.2中異構網路的融合結構中,通常有三種類型的融合方案,分別是松耦合結構、緊耦合結構、超緊耦合結構。接下來分別介紹這三種耦合結構。
超緊耦合是通過連接到相同的BSC上與不同的無線接入技術(Radio Access Technology,RAT)進行融合。網路的狀態信息是局部的,不需要通過額外的請求來獲得信息,可以應用在當網路之間是重疊覆蓋的情況下。與其他的耦合方案相比,超緊耦合方案的切換時延很短,因為中間涉及到的網路實體少。但是由於這兩種RAT完全不同,因此實現超緊耦合方式就需要對應用在BSC上的處理過程進行很多修改。
在緊耦合結構中,不同的RATs通過CN進行融合,耦合結點可以是MSC或者PDSN。在圖2.2中,MSC或者PDSN都是負責WWAN和WLAN的連接管理、認證和定價,因此WLAN路由器需要實現相關的WWAN協議。與超緊耦合相比,這個系統僅需要對現有接入網路進行很小的修改,因此它非常容易實現。與超緊耦合相比,在切換過程中,由於涉及到很多網路的實體,因此這種方案的VHO時延增加了。
在松耦合的異構網路中,MSC與WLAN都經過通用介面與公共的Internet進行交互信息,來保持服務的連續性。但是由於每個網路需要執行網路的連接和會話的激活過程,因此這種方案執行切換時會導致時延很大。
對於超緊耦合和緊耦合方式的異構網路融合結構中,網路選擇演算法通常可以安排在耦合節點上,即分別是BSC和CN。但是對於松耦合方式,網路選擇演算法可以應用在移動終端。
㈧ 異構網路的異構網路中無線資源管理技術
傳統意義的無線資源管理包括接入控制、切換、負載均衡、功率控制、信道分配等,而在未來異構網路中,無線資源管理的目標還包括為用戶提供無處不在的服務和進行無縫切換,並提高無線資源的利用率。異構網路中無線資源管理是傳統無線資源管理的一種擴充。
異構網路中無線資源管理的研究引起了廣泛的關注,比較典型的幾個無線資源管理模型包括協同無線資源管理、Multi-access無線資源管理(Multi-access RRM,MRRM)和聯合無線資源管理。下面分別對這三種無線資源管理方法進行具體的介紹。 3GPP在規范中提出了CRRM的概念,通過CRRM對WCDMA、WLAN和GSM/EDGE等多種RAT進行統一的管理。CRRM中兩個主要技術是新發起呼叫的網路選擇和漫遊呼叫垂直切換的網路選擇。在這里每個RAT需要執行呼叫允許接入控制、調度(Scheling)、HHO和局部功率控制(Power Control)。CRRM結構框架如圖2.3所示。
每個RRM實體負責監測相應RAT的網路參數和狀態信息,並將這些信息周期性發送到CRRM伺服器,再由CRRM伺服器處理每個網路匯報的數據,並進行分析和處理,最後將決策的結果反饋給每個RRM實體,由這些RRM實體來具體執行對應的決策。
CRRM主要的優點是可以利用負載均衡(Load Balancing,LB)來降低阻塞率和提高無線資源的利用率;根據終端的業務類型為用戶選擇合適的網路,從而來改善網路的QoS管理功能。 Multi-access無線資源管理是基於三個主要的結構功能模塊:集中式的MRRM、分布式的MRRM和終端MRRM,如圖2.4所示。
集中式的MRRM一般適用於緊耦合的融合異構網路結構。圖2.5給出了集中式的MRRM架構,所謂集中式指的就是每個RAT都歸一個集中的RRM控制實體來管理,這個集中的控制實體能夠獲得所管理區域內的所有RAT的流量、負荷以及阻塞狀態等,能夠起到對這些網路進行統一的管理。這種結構有一些缺點,例如兩個相鄰的RAT之間會產生邊緣效應,還有不便於擴展,當集中式RRM管理的RATs太多時,難以管理,且效率不是很高。因此出現了分布式的MRRM架構。
如圖2.6所示給出了分布式的MRRM架構,分布式的MRRM沒有一個不依賴於某一個特定的MRRM實體,相應的功能分散給地位對等的RRM實體。分布式管理可以將系統的目標分配給每個分布式的RRM實體,由它們分擔管理和計算的功能,這樣可以降低每個節點的計算復雜度。並且系統的可靠性增加了,不會像集中式的MRRM,一旦集中RRM控制實體發生故障,整個系統就發生癱瘓了。這種框架已經在3GPP規范中得到了應用,並應用到了WCDMA和GSM/EDGE構成的異構網路系統。
基於終端的MRRM將MRRM功能和決策交由終端負責,但是這種方式還是需要網路端進行協助,例如每個網路實體需要將自身狀態信息提供給每個移動終端,以便進行MRRM決策。 文獻 提出了聯合無線資源管理方案。該方案的核心概念是業務分離和多重連接。JRRM將業務分成基本部分和增強部分,前者由大覆蓋范圍的RAT來傳送,例如UMTS。JRRM的目標是通過利用中心控制器來管理所有子網的容量,為不同RAT之間提供智能互聯。JRRM框架與CRRM結構非常類似,但是JRRM並不僅僅局限於UMTS和GSM。此外,JRRM通過一些改變和附加特點彌補了CRRM方案。一種超緊耦合方式允許聯合、管理網路與終端之間的業務流,因此聯合無線資源規劃和允許接入控制需要最優化頻譜效率、處理不同的業務類型和QoS約束以及自適應的規劃業務等。特別的是通過多重接入來利用業務分割來獲得最優QoS,多重接入指的是一個終端可以同時接入到多個無線網路,從而可以將業務流分割成多個子業務流,分別通過不同的RAT來非同步傳送。
如圖2.7中所示,JRRM結構是基於不同RATs同時覆蓋的假設,每個RAT需要保證用戶流量介面(User Traffic Interface,IU)、監測功能、業務調度(Traffic Schele,TRSCH)、負荷控制(Load Control,LODCL)、接入允許控制(Session Admission Control,SAC)等功能相互高效工作。業務估計模塊(Traffic Estimation mole,TREST)通知每個允許接入的會話或呼叫進行接入控制,去更新每個連接的優先順序信息和接入允許決策。
㈨ 有沒有那種接收別人wifi信號,然後再轉換成自己的wifi的東西或方法
目前沒有出現類似的軟體或者設備出現可以達到你需要的要求。
無線網路在無線區域網的范疇是指「無線相容性認證」,
實質上是一種商業認證,同時也是一種無線聯網技術,以前通過網線連接電腦,而Wi-Fi則是通過無線電波來連網;常見的就是一個無線路由器,那麼在這個無線路由器的電波覆蓋的有效范圍都可以採用Wi-Fi連接方式進行聯網,如果無線路由器連接了一條ADSL線路或者別的上網線路,則又被稱為熱點。