❶ 資料庫為什麼要分庫分表
1 基本思想之什麼是分庫分表?
從字面上簡單理解,就是把原本存儲於一個庫的數據分塊存儲到多個庫上,把原本存儲於一個表的數據分塊存儲到多個表上。
2 基本思想之為什麼要分庫分表?
數
據庫中的數據量不一定是可控的,在未進行分庫分表的情況下,隨著時間和業務的發展,庫中的表會越來越多,表中的數據量也會越來越大,相應地,數據操作,增
刪改查的開銷也會越來越大;另外,由於無法進行分布式式部署,而一台伺服器的資源(CPU、磁碟、內存、IO等)是有限的,最終資料庫所能承載的數據量、
數據處理能力都將遭遇瓶頸。
3 分庫分表的實施策略。
分庫分表有垂直切分和水平切分兩種。
3.1
何謂垂直切分,即將表按照功能模塊、關系密切程度劃分出來,部署到不同的庫上。例如,我們會建立定義資料庫workDB、商品資料庫payDB、用戶數據
庫userDB、日誌資料庫logDB等,分別用於存儲項目數據定義表、商品定義表、用戶數據表、日誌數據表等。
3.2
何謂水平切分,當一個表中的數據量過大時,我們可以把該表的數據按照某種規則,例如userID散列,進行劃分,然後存儲到多個結構相同的表,和不同的庫
上。例如,我們的userDB中的用戶數據表中,每一個表的數據量都很大,就可以把userDB切分為結構相同的多個userDB:part0DB、
part1DB等,再將userDB上的用戶數據表userTable,切分為很多userTable:userTable0、userTable1等,
然後將這些表按照一定的規則存儲到多個userDB上。
3.3 應該使用哪一種方式來實施資料庫分庫分表,這要看資料庫中數據量的瓶頸所在,並綜合項目的業務類型進行考慮。
如果資料庫是因為表太多而造成海量數據,並且項目的各項業務邏輯劃分清晰、低耦合,那麼規則簡單明了、容易實施的垂直切分必是首選。
而
如果資料庫中的表並不多,但單表的數據量很大、或數據熱度很高,這種情況之下就應該選擇水平切分,水平切分比垂直切分要復雜一些,它將原本邏輯上屬於一體
的數據進行了物理分割,除了在分割時要對分割的粒度做好評估,考慮數據平均和負載平均,後期也將對項目人員及應用程序產生額外的數據管理負擔。
在現實項目中,往往是這兩種情況兼而有之,這就需要做出權衡,甚至既需要垂直切分,又需要水平切分。我們的游戲項目便綜合使用了垂直與水平切分,我們首先對資料庫進行垂直切分,然後,再針對一部分表,通常是用戶數據表,進行水平切分。
4 分庫分表存在的問題。
4.1 事務問題。
在執行分庫分表之後,由於數據存儲到了不同的庫上,資料庫事務管理出現了困難。如果依賴資料庫本身的分布式事務管理功能去執行事務,將付出高昂的性能代價;如果由應用程序去協助控制,形成程序邏輯上的事務,又會造成編程方面的負擔。
4.2 跨庫跨表的join問題。
在執行了分庫分表之後,難以避免會將原本邏輯關聯性很強的數據劃分到不同的表、不同的庫上,這時,表的關聯操作將受到限制,我們無法join位於不同分庫的表,也無法join分表粒度不同的表,結果原本一次查詢能夠完成的業務,可能需要多次查詢才能完成。
4.3 額外的數據管理負擔和數據運算壓力。
額
外的數據管理負擔,最顯而易見的就是數據的定位問題和數據的增刪改查的重復執行問題,這些都可以通過應用程序解決,但必然引起額外的邏輯運算,例如,對於
一個記錄用戶成績的用戶數據表userTable,業務要求查出成績最好的100位,在進行分表之前,只需一個order
by語句就可以搞定,但是在進行分表之後,將需要n個order
by語句,分別查出每一個分表的前100名用戶數據,然後再對這些數據進行合並計算,才能得出結果。
❷ 人臉識別常用的人臉資料庫有哪些
給你提供幾個線索,數據都可以去數據堂下載。
1.FERET人臉資料庫 -
由FERET項目創建,包含1萬多張多姿態和光照的人臉圖像,是人臉識別領域應用最廣泛的人臉資料庫之一.其中的多數人是西方人,每個人所包含的人臉圖像的變化比較單一
2.CMU-PIE人臉資料庫
由美國卡耐基梅隆大學創建,包含68位志願者的41,368張多姿態,光照和表情的面部圖像.其中的姿態和光照變化圖像也是在嚴格控制的條件下採集的,目前已經逐漸成為人臉識別領域的一個重要的測試集合
3.YALE人臉資料庫
由耶魯大學計算視覺與控制中心創建,包含15位志願者的165張圖片,包含光照,表情和姿態
的變化.
4. YALE人臉資料庫B
包含了10個人的5,850幅多姿態,多光照的圖像.其中的姿態和光照變化的圖像都是在嚴格控制的條件下採集的,主要用於光照和姿態問題的建模與分析.由於採集人數較少,該資料庫的進一步應用受到了比較大的限制
5. MIT人臉資料庫
由麻省理工大學媒體實驗室創建,包含16位志願者的2,592張不同姿態,光照和大小的面部圖像.
6. ORL人臉資料庫
由劍橋大學AT&T實驗室創建,包含40人共400張面部圖像,部分志願者的圖像包括了姿態,
表情和面部飾物的變化.該人臉庫在人臉識別研究的早期經常被人們採用,但由於變化模式較少,多數系統的識別率均可以達到90%以上,因此進一步利用的價值已經不大.
7. BioID人臉資料庫
包含在各種光照和復雜背景下的1521張灰度面部圖像,眼睛位置已經被手工標注。
❸ 美國哪所大學的計算機系最好
美國計算機專業的大學有很多例如:(信息來源美國大學院校庫https://www.liuxue315.cn/university/?page=1&country=USA?ozs=zj-lx)
1、斯坦福大學的計算機科學擁有40人以上,其中不乏響當當的圖靈獎得主和各個學科領域的領軍人物。
2、麻省理工學院,MIT招生不太喜歡看GRE成績。MIT曾為計算機科學的發展作出不可磨滅的貢獻,數據流計算的思想和數據流計算機、人工智慧方面的許多重大成就,影響深遠。
3、加州大學伯克利分校,同樣地處舊金山灣畔,矽谷地帶,離Stanford大約只有50公里的UC.Berkeley是美國激進的學校之一。
4、卡耐基梅隆大學,CMU是位於匹茲堡的不大的學校,但這個學校在工程及其他一些領域的學堂。
5、伊利諾斯大學、UIUC的工程學院在全美是至尊級的,其CS、ECE、EE在歷史上都屢建戰功。
如果想了解自己的成績可以申請到那些美國大學的計算機專業,可以通過留學志願參考系統https://www.liuxue315.cn/dingwei/?ozs=w-hf把你的GPA、語言成績、專業、院校背景信息輸入到留學志願參考系統中,系統會自動從資料庫中匹配出與你情況相似的同學案例,看看他們成功申請了哪些院校和專業,這樣子就可以看到你目前的條件能申請到國外什麼層次的院校和專業了
❹ CMU的MSPPM課程設置怎麼樣
CMU的MSPPM包括 Data Analytics Pathway 旨在提高學生數據和分析技能來改善教育,交通,環境,刑事司法,經濟發展,國家安全與國防以及醫療保健等領域的公共計劃和政策。
該Track課程非常量化,學生必須從以下四個方向中來選夠36學分的課程,分別是數據挖掘和機器學習,統計和建模,計算機編程和信息系統,決策框架和政策方法。
除此之外,學生還必須學習MSPPM的核心課,主要涉及R,經濟分析,資料庫管理,管理,公共政策,管理科學,數據分析等方面的內容。選修課涉及的領域也很廣泛,比如公共政策,計算機編程,數據科學,信息系統,公共金融,管理咨詢等等。還包括暑期實習的機會。