❶ 分庫分表 VS newsql資料庫
最近與同行 科技 交流,經常被問到分庫分表與分布式資料庫如何選擇,網上也有很多關於中間件+傳統關系資料庫(分庫分表)與NewSQL分布式資料庫的文章,但有些觀點與判斷是我覺得是偏激的,脫離環境去評價方案好壞其實有失公允。
本文通過對兩種模式關鍵特性實現原理對比,希望可以盡可能客觀、中立的闡明各自真實的優缺點以及適用場景。
首先關於「中間件+關系資料庫分庫分表」算不算NewSQL分布式資料庫問題,國外有篇論文pavlo-newsql-sigmodrec,如果根據該文中的分類,Spanner、TiDB、OB算是第一種新架構型,Sharding-Sphere、Mycat、DRDS等中間件方案算是第二種(文中還有第三種雲資料庫,本文暫不詳細介紹)。
基於中間件(包括SDK和Proxy兩種形式)+傳統關系資料庫(分庫分表)模式是不是分布式架構?我覺得是的,因為存儲確實也分布式了,也能實現橫向擴展。但是不是"偽"分布式資料庫?從架構先進性來看,這么說也有一定道理。"偽"主要體現在中間件層與底層DB重復的SQL解析與執行計劃生成、存儲引擎基於B+Tree等,這在分布式資料庫架構中實際上冗餘低效的。為了避免引起真偽分布式資料庫的口水戰,本文中NewSQL資料庫特指這種新架構NewSQL資料庫。
NewSQL資料庫相比中間件+分庫分表的先進在哪兒?畫一個簡單的架構對比圖:
這些大多也是NewSQL資料庫產品主要宣傳的點,不過這些看起來很美好的功能是否真的如此?接下來針對以上幾點分別闡述下的我的理解。
這是把雙刃劍。
CAP限制
想想更早些出現的NoSQL資料庫為何不支持分布式事務(最新版的mongoDB等也開始支持了),是缺乏理論與實踐支撐嗎?並不是,原因是CAP定理依然是分布式資料庫頭上的頸箍咒,在保證強一致的同時必然會犧牲可用性A或分區容忍性P。為什麼大部分NoSQL不提供分布式事務?
那麼NewSQL資料庫突破CAP定理限制了嗎?並沒有。NewSQL資料庫的鼻主Google Spanner(目前絕大部分分布式資料庫都是按照Spanner架構設計的)提供了一致性和大於5個9的可用性,宣稱是一個「實際上是CA」的,其真正的含義是 系統處於 CA 狀態的概率非常高,由於網路分區導致的服務停用的概率非常小 ,究其真正原因是其打造私有全球網保證了不會出現網路中斷引發的網路分區,另外就是其高效的運維隊伍,這也是cloud spanner的賣點。詳細可見CAP提出者Eric Brewer寫的《Spanner, TrueTime 和CAP理論》。
完備性 :
兩階段提交協議是否嚴格支持ACID,各種異常場景是不是都可以覆蓋?
2PC在commit階段發送異常,其實跟最大努力一階段提交類似也會有部分可見問題,嚴格講一段時間內並不能保證A原子性和C一致性(待故障恢復後recovery機制可以保證最終的A和C)。完備的分布式事務支持並不是一件簡單的事情,需要可以應對網路以及各種硬體包括網卡、磁碟、CPU、內存、電源等各類異常,通過嚴格的測試。之前跟某友商交流,他們甚至說目前已知的NewSQL在分布式事務支持上都是不完整的,他們都有案例跑不過,圈內人士這么篤定,也說明了 分布式事務的支持完整程度其實是層次不齊的。
但分布式事務又是這些NewSQL資料庫的一個非常重要的底層機制,跨資源的DML、DDL等都依賴其實現,如果這塊的性能、完備性打折扣,上層跨分片SQL執行的正確性會受到很大影響。
性能
傳統關系資料庫也支持分布式事務XA,但為何很少有高並發場景下用呢? 因為XA的基礎兩階段提交協議存在網路開銷大,阻塞時間長、死鎖等問題,這也導致了其實際上很少大規模用在基於傳統關系資料庫的OLTP系統中。
NewSQL資料庫的分布式事務實現也仍然多基於兩階段提交協議,例如google percolator分布式事務模型,
採用原子鍾+MVCC+ Snapshot Isolation(SI),這種方式通過TSO(Timestamp Oracle)保證了全局一致性,通過MVCC避免了鎖,另外通過primary lock和secondary lock將提交的一部分轉為非同步,相比XA確實提高了分布式事務的性能。
但不管如何優化,相比於1PC,2PC多出來的GID獲取、網路開銷、prepare日誌持久化還是會帶來很大的性能損失,尤其是跨節點的數量比較多時會更加顯著,例如在銀行場景做個批量扣款,一個文件可能上W個賬戶,這樣的場景無論怎麼做還是吞吐都不會很高。
雖然NewSQL分布式資料庫產品都宣傳完備支持分布式事務,但這並不是說應用可以完全不用關心數據拆分,這些資料庫的最佳實踐中仍然會寫到,應用的大部分場景盡可能避免分布式事務。
既然強一致事務付出的性能代價太大,我們可以反思下是否真的需要這種強一致的分布式事務?尤其是在做微服務拆分後,很多系統也不太可能放在一個統一的資料庫中。嘗試將一致性要求弱化,便是柔性事務,放棄ACID(Atomicity,Consistency, Isolation, Durability),轉投BASE(Basically Available,Soft state,Eventually consistent),例如Saga、TCC、可靠消息保證最終一致等模型,對於大規模高並發OLTP場景,我個人更建議使用柔性事務而非強一致的分布式事務。關於柔性事務,筆者之前也寫過一個技術組件,最近幾年也涌現出了一些新的模型與框架(例如阿里剛開源的Fescar),限於篇幅不再贅述,有空再單獨寫篇文章。
HA與異地多活
主從模式並不是最優的方式,就算是半同步復制,在極端情況下(半同步轉非同步)也存在丟數問題,目前業界公認更好的方案是基於paxos分布式一致性協議或者其它類paxos如raft方式,Google Spanner、TiDB、cockcoachDB、OB都採用了這種方式,基於Paxos協議的多副本存儲,遵循過半寫原則,支持自動選主,解決了數據的高可靠,縮短了failover時間,提高了可用性,特別是減少了運維的工作量,這種方案技術上已經很成熟,也是NewSQL資料庫底層的標配。
當然這種方式其實也可以用在傳統關系資料庫,阿里、微信團隊等也有將MySQL存儲改造支持paxos多副本的,MySQL也推出了官方版MySQL Group Cluster,預計不遠的未來主從模式可能就成為 歷史 了。
需要注意的是很多NewSQL資料庫廠商宣傳基於paxos或raft協議可以實現【異地多活】,這個實際上是有前提的,那就是異地之間網路延遲不能太高 。以銀行「兩地三中心」為例,異地之間多相隔數千里,延時達到數十毫秒,如果要多活,那便需異地副本也參與資料庫日誌過半確認,這樣高的延時幾乎沒有OLTP系統可以接受的。
資料庫層面做異地多活是個美好的願景,但距離導致的延時目前並沒有好的方案。 之前跟螞蟻團隊交流,螞蟻異地多活的方案是在應用層通過MQ同步雙寫交易信息,異地DC將交易信息保存在分布式緩存中,一旦發生異地切換,資料庫同步中間件會告之數據延遲時間,應用從緩存中讀取交易信息,將這段時間內涉及到的業務對象例如用戶、賬戶進行黑名單管理,等數據同步追上之後再將這些業務對象從黑名單中剔除。由於雙寫的不是所有資料庫操作日誌而只是交易信息,數據延遲隻影響一段時間內數據,這是目前我覺得比較靠譜的異地度多活方案。
另外有些系統進行了單元化改造,這在paxos選主時也要結合考慮進去,這也是目前很多NewSQL資料庫欠缺的功能。
Scale橫向擴展與分片機制
paxos演算法解決了高可用、高可靠問題,並沒有解決Scale橫向擴展的問題,所以分片是必須支持的。NewSQL資料庫都是天生內置分片機制的,而且會根據每個分片的數據負載(磁碟使用率、寫入速度等)自動識別熱點,然後進行分片的分裂、數據遷移、合並,這些過程應用是無感知的,這省去了DBA的很多運維工作量。以TiDB為例,它將數據切成region,如果region到64M時,數據自動進行遷移。
分庫分表模式下需要應用設計之初就要明確各表的拆分鍵、拆分方式(range、取模、一致性哈希或者自定義路由表)、路由規則、拆分庫表數量、擴容方式等。相比NewSQL資料庫,這種模式給應用帶來了很大侵入和復雜度,這對大多數系統來說也是一大挑戰。
這里有個問題是NewSQL資料庫統一的內置分片策略(例如tidb基於range)可能並不是最高效的,因為與領域模型中的劃分要素並不一致,這導致的後果是很多交易會產生分布式事務。 舉個例子,銀行核心業務系統是以客戶為維度,也就是說客戶表、該客戶的賬戶表、流水表在絕大部分場景下是一起寫的,但如果按照各表主鍵range進行分片,這個交易並不能在一個分片上完成,這在高頻OLTP系統中會帶來性能問題。
分布式SQL支持
常見的單分片SQL,這兩者都能很好支持。NewSQL資料庫由於定位與目標是一個通用的資料庫,所以支持的SQL會更完整,包括跨分片的join、聚合等復雜SQL。中間件模式多面向應用需求設計,不過大部分也支持帶拆分鍵SQL、庫表遍歷、單庫join、聚合、排序、分頁等。但對跨庫的join以及聚合支持就不夠了。
NewSQL資料庫一般並不支持存儲過程、視圖、外鍵等功能,而中間件模式底層就是傳統關系資料庫,這些功能如果只是涉及單庫是比較容易支持的。
NewSQL資料庫往往選擇兼容MySQL或者PostgreSQL協議,所以SQL支持僅局限於這兩種,中間件例如驅動模式往往只需做簡單的SQL解析、計算路由、SQL重寫,所以可以支持更多種類的資料庫SQL。
SQL支持的差異主要在於分布式SQL執行計劃生成器,由於NewSQL資料庫具有底層數據的分布、統計信息,因此可以做CBO,生成的執行計劃效率更高,而中間件模式下沒有這些信息,往往只能基於規則RBO(Rule-Based-Opimization),這也是為什麼中間件模式一般並不支持跨庫join,因為實現了效率也往往並不高,還不如交給應用去做。
存儲引擎
傳統關系資料庫的存儲引擎設計都是面向磁碟的,大多都基於B+樹。B+樹通過降低樹的高度減少隨機讀、進而減少磁碟尋道次數,提高讀的性能,但大量的隨機寫會導致樹的分裂,從而帶來隨機寫,導致寫性能下降。NewSQL的底層存儲引擎則多採用LSM,相比B+樹LSM將對磁碟的隨機寫變成順序寫,大大提高了寫的性能。不過LSM的的讀由於需要合並數據性能比B+樹差,一般來說LSM更適合應在寫大於讀的場景。當然這只是單純數據結構角度的對比,在資料庫實際實現時還會通過SSD、緩沖、bloom filter等方式優化讀寫性能,所以讀性能基本不會下降太多。NewSQL數據由於多副本、分布式事務等開銷,相比單機關系資料庫SQL的響應時間並不佔優,但由於集群的彈性擴展,整體QPS提升還是很明顯的,這也是NewSQL資料庫廠商說分布式資料庫更看重的是吞吐,而不是單筆SQL響應時間的原因。
成熟度與生態
分布式資料庫是個新型通用底層軟體,准確的衡量與評價需要一個多維度的測試模型,需包括發展現狀、使用情況、社區生態、監控運維、周邊配套工具、功能滿足度、DBA人才、SQL兼容性、性能測試、高可用測試、在線擴容、分布式事務、隔離級別、在線DDL等等,雖然NewSQL資料庫發展經過了一定時間檢驗,但多集中在互聯網以及傳統企業非核心交易系統中,目前還處於快速迭代、規模使用不斷優化完善的階段。
相比而言,傳統關系資料庫則經過了多年的發展,通過完整的評測,在成熟度、功能、性能、周邊生態、風險把控、相關人才積累等多方面都具有明顯優勢,同時對已建系統的兼容性也更好。
對於互聯網公司,數據量的增長壓力以及追求新技術的基因會更傾向於嘗試NewSQL資料庫,不用再考慮庫表拆分、應用改造、擴容、事務一致性等問題怎麼看都是非常吸引人的方案。
對於傳統企業例如銀行這種風險意識較高的行業來說,NewSQL資料庫則可能在未來一段時間內仍處於 探索 、審慎試點的階段。基於中間件+分庫分表模式架構簡單,技術門檻更低,雖然沒有NewSQL資料庫功能全面,但大部分場景最核心的訴求也就是拆分後SQL的正確路由,而此功能中間件模式應對還是綽綽有餘的,可以說在大多數OLTP場景是夠用的。
限於篇幅,其它特性例如在線DDL、數據遷移、運維工具等特性就不在本文展開對比。
總結
如果看完以上內容,您還不知道選哪種模式,那麼結合以下幾個問題,先思考下NewSQL資料庫解決的點對於自身是不是真正的痛點:
如果以上有2到3個是肯定的,那麼你可以考慮用NewSQL資料庫了,雖然前期可能需要一定的學習成本,但它是資料庫的發展方向,未來收益也會更高,尤其是互聯網行業,隨著數據量的突飛猛進,分庫分表帶來的痛苦會與日俱增。當然選擇NewSQL資料庫你也要做好承擔一定風險的准備。
如果你還未做出抉擇,不妨再想想下面幾個問題:
如果這些問題有多數是肯定的,那還是分庫分表吧。在軟體領域很少有完美的解決方案,NewSQL資料庫也不是數據分布式架構的銀彈。相比而言分庫分表是一個代價更低、風險更小的方案,它最大程度復用傳統關系資料庫生態,通過中間件也可以滿足分庫分表後的絕大多數功能,定製化能力更強。 在當前NewSQL資料庫還未完全成熟的階段,分庫分表可以說是一個上限低但下限高的方案,尤其傳統行業的核心系統,如果你仍然打算把資料庫當做一個黑盒產品來用,踏踏實實用好分庫分表會被認為是個穩妥的選擇。
很多時候軟體選型取決於領域特徵以及架構師風格,限於筆者知識與所屬行業特點所限,以上僅為個人粗淺的一些觀點,歡迎討論。
❷ 分庫分表技術及技術方案
一、分庫分表的必要性
分庫分表技術的使用,主要是資料庫產生了瓶頸,如單庫的並發訪問或單表的查詢都超出了閾值。對系統使用造成一定的影響,不得已而產生的技術。
通過分庫分表技術來解決此類問題,但正因為使用此技術,會產生ACID一系列的問題,各類中間件解決此類問題各有各的優勢。
提示:如場景無必要,千萬不要薯圓褲使用分庫分表。
二、分庫分表的思路
1、垂直區分
垂直分庫:從業務角度,一個庫分成多個庫,如把訂單和用戶信息分成兩個庫來存儲。這樣的好處就是可以微服務了。每塊的業務單獨部署,互不影響,通過介面去調用。
垂直分表:把大表分成多個小表,如熱點數據和非熱點數據分開,提高查詢速度。
2、水平區分
水平分表:同一業務如數據量大了以後,根據一定的規則分為不同的表進行存儲。
水平分庫:如訂單分成多個庫存儲,分解伺服器壓力。
以上一般來說,垂直分庫和水平分表用的會多些。
三、分庫分表的原理分析
分庫分表常用的方案:Hash取模方案和range范圍方案;
路由演算法為最主要的演算法,指得是把路由的Key按照指定的腔物演算法進行存放;
1、Hash取模方案
根據取余分配到不同的表裡。要根據實際情況確認模的大小。此方案由於平均分配,不存在熱點問題,但數據遷移很復雜。
2、Range范圍方案
range根據范圍進行劃分,如日期,大小。此方案不存在數據遷移,但存在熱點問題。
四、分庫分表的技術選型
1、技術選型
解決方案主要分為4種:MySQL的分區技術、NoSql、NewSQL、MySQL的分庫分表。
(1)mysql分區技術:把一張表存放在不同存儲文件。由於無法負載,使用較少。
(2)NoSQL(如MongoDB):如是訂單等比較重要數據,強關聯關系,需約束一致性,不太適應。
(3)NewSql(具有NoSQL對海量數據的存儲管理能力,還保持了傳統資料庫支持ACID和SQL等特性):如TiDB可滿足需求。
(4)MySQL的分庫分表:如使用mysql,此種方案為主流方式。
2、中間件
解決此類問題的中間件主要為:Proxy模式、Client模式。
(1)Proxy模式
(2)Client模式
把分庫分表相關邏輯存放在客戶端,一版客戶端的應用會引用一個jar,然後再jar中處理SQL組合、資料庫數簡路由、執行結果合並等相關功能。
(3)中間件的比較
由於Client模式少了一層,運維方便,相對來說容易些。
五、分庫分表的實踐
根據容量(當前容量和增長量)評估分庫或分表個數 -> 選key(均勻)-> 分表規則(hash或range等)-> 執行(一般雙寫)-> 擴容問題(盡量減少數據的移動)。
在這里我們選用中間件share-jdbc。
1、引入maven依賴
2、spring boot規則配置
行表達式標識符可以使用${...}或$->{...},但前者與Spring本身的屬性文件佔位符沖突,因此在Spring環境中使用行表達式標識符建議使用$->{...}。
3、創建DataSource
通過ShardingDataSourceFactory工廠和規則配置對象獲取ShardingDataSource,ShardingDataSource實現自JDBC的標准介面DataSource。然後即可通過DataSource選擇使用原生JDBC開發,或者使用JPA, MyBatis等ORM工具。
❸ .netcore分庫分表的問題
.NET Core作為一款領先的跨平台開發框架,對於分庫分表的應用也有很好的支持。在.NET Core中,可以使用ORM框架或自定義數據訪問層實現分庫分表的功能。
具體來說,分庫分表可以在數掘羨弊據庫層面實現,也可以在應用層面實現。在資料庫層面實現,需要先進行水平分片和垂直拆分,然後在應用層面使用ORM框架或自定義數據訪問層進行數據讀寫和事務控制。
在.NET Core中判族,常用的ORM框架包括Entity Framework Core、Dapper和NHibernate等,它們可以使用分庫分表插件或自定義數據訪問層來實現分庫分表的功能。
同時,也可以在應用層面實現分庫分表功能。例如,可以使用分布式緩存或分布式數據訪問層來分散數據訪問負載,從而達到分庫分表的效果。
總之派李,.NET Core提供了很好的支持和擴展性,可以根據具體業務需求選擇適合的分庫分表方式。
❹ 淺談mysql資料庫分庫分表那些事-億級數據存儲方案
mysql分庫分表一般有如下場景
其中1,2相對較容易實現,本文重點講講水平拆表和水平拆庫,以及基於mybatis插件方式實現水平拆分方案落地。
在 《聊一聊擴展欄位設計》 一文中有講解到基於KV水平存儲擴展欄位方案,這就是非常典型的可以水平分表的場景。主表和kv表是一對N關系,隨著主表數據量增長,KV表最大N倍線性增長。
這里我們以分KV表水平拆分為場景
對於kv擴展欄位查詢,只會根據id + key 或者 id 為條件的方式查詢,所以這里我們可以按照id 分片即可
分512張表(實際場景具體分多少表還得根據欄位增加的頻次而定)
分表後表名為kv_000 ~ kv_511
id % 512 = 1 .... 分到 kv_001,
id % 512 = 2 .... 分到 kv_002
依次類推!
水平分表相對比較容易,後面會講到基於mybatis插件實現方案
場景:以下我們基於博客文章表分庫場景來分析
目標:
表結構如下(節選部分欄位):
按照user_id sharding
假如分1024個庫,按照user_id % 1024 hash
user_id % 1024 = 1 分到db_001庫
user_id % 1024 = 2 分到db_002庫
依次類推
目前是2個節點,假如後期達到瓶頸,我們可以增加至4個節點
最多可以增加只1024個節點,性能線性增長
對於水平分表/分庫後,非shardingKey查詢首先得考慮到
基於mybatis分庫分表,一般常用的一種是基於spring AOP方式, 另外一種基於mybatis插件。其實兩種方式思路差不多。
為了比較直觀解決這個問題,我分別在Executor 和StatementHandler階段2個攔截器
實現動態數據源獲取介面
測試結果如下
由此可知,我們需要在Executor階段 切換數據源
對於分庫:
原始sql:
目標sql:
其中定義了三個註解
@useMaster 是否強制讀主
@shardingBy 分片標識
@DB 定義邏輯表名 庫名以及分片策略
1)編寫entity
Insert
select
以上順利實現mysql分庫,同樣的道理實現同時分庫分表也很容易實現。
此插件具體實現方案已開源: https://github.com/bytearch/mybatis-sharding
目錄如下:
mysql分庫分表,首先得找到瓶頸在哪裡(IO or CPU),是分庫還是分表,分多少?不能為了分庫分表而拆分。
原則上是盡量先垂直拆分 後 水平拆分。
以上基於mybatis插件分庫分表是一種實現思路,還有很多不完善的地方,
例如:
❺ 資料庫為什麼要分庫分表
1 基本思想之什麼是分庫分表?
從字面上簡單理解,就是把原本存儲於一個庫的數據分塊存儲到多個庫上,把原本存儲於一個表的數據分塊存儲到多個表上。
2 基本思想之為什麼要分庫分表?
數
據庫中的數據量不一定是可控的,在未進行分庫分表的情況下,隨著時間和業務的發展,庫中的表會越來越多,表中的數據量也會越來越大,相應地,數據操作,增
刪改查的開銷也會越來越大;另外,由於無法進行分布式式部署,而一台伺服器的資源(CPU、磁碟、內存、IO等)是有限的,最終資料庫所能承載的數據量、
數據處理能力都將遭遇瓶頸。
3 分庫分表的實施策略。
分庫分表有垂直切分和水平切分兩種。
3.1
何謂垂直切分,即將表按照功能模塊、關系密切程度劃分出來,部署到不同的庫上。例如,我們會建立定義資料庫workDB、商品資料庫payDB、用戶數據
庫userDB、日誌資料庫logDB等,分別用於存儲項目數據定義表、商品定義表、用戶數據表、日誌數據表等。
3.2
何謂水平切分,當一個表中的數據量過大時,我們可以把該表的數據按照某種規則,例如userID散列,進行劃分,然後存儲到多個結構相同的表,和不同的庫
上。例如,我們的userDB中的用戶數據表中,每一個表的數據量都很大,就可以把userDB切分為結構相同的多個userDB:part0DB、
part1DB等,再將userDB上的用戶數據表userTable,切分為很多userTable:userTable0、userTable1等,
然後將這些表按照一定的規則存儲到多個userDB上。
3.3 應該使用哪一種方式來實施資料庫分庫分表,這要看資料庫中數據量的瓶頸所在,並綜合項目的業務類型進行考慮。
如果資料庫是因為表太多而造成海量數據,並且項目的各項業務邏輯劃分清晰、低耦合,那麼規則簡單明了、容易實施的垂直切分必是首選。
而
如果資料庫中的表並不多,但單表的數據量很大、或數據熱度很高,這種情況之下就應該選擇水平切分,水平切分比垂直切分要復雜一些,它將原本邏輯上屬於一體
的數據進行了物理分割,除了在分割時要對分割的粒度做好評估,考慮數據平均和負載平均,後期也將對項目人員及應用程序產生額外的數據管理負擔。
在現實項目中,往往是這兩種情況兼而有之,這就需要做出權衡,甚至既需要垂直切分,又需要水平切分。我們的游戲項目便綜合使用了垂直與水平切分,我們首先對資料庫進行垂直切分,然後,再針對一部分表,通常是用戶數據表,進行水平切分。
4 分庫分表存在的問題。
4.1 事務問題。
在執行分庫分表之後,由於數據存儲到了不同的庫上,資料庫事務管理出現了困難。如果依賴資料庫本身的分布式事務管理功能去執行事務,將付出高昂的性能代價;如果由應用程序去協助控制,形成程序邏輯上的事務,又會造成編程方面的負擔。
4.2 跨庫跨表的join問題。
在執行了分庫分表之後,難以避免會將原本邏輯關聯性很強的數據劃分到不同的表、不同的庫上,這時,表的關聯操作將受到限制,我們無法join位於不同分庫的表,也無法join分表粒度不同的表,結果原本一次查詢能夠完成的業務,可能需要多次查詢才能完成。
4.3 額外的數據管理負擔和數據運算壓力。
額
外的數據管理負擔,最顯而易見的就是數據的定位問題和數據的增刪改查的重復執行問題,這些都可以通過應用程序解決,但必然引起額外的邏輯運算,例如,對於
一個記錄用戶成績的用戶數據表userTable,業務要求查出成績最好的100位,在進行分表之前,只需一個order
by語句就可以搞定,但是在進行分表之後,將需要n個order
by語句,分別查出每一個分表的前100名用戶數據,然後再對這些數據進行合並計算,才能得出結果。
❻ 資料庫分庫分表(二)Twitter-Snowflake(64位分布式ID演算法)分析與JAVA實現
Twitter-Snowflake演算法產生的背景相當簡單,為了滿足Twitter每秒上萬條消息的請求,每條消息都必須分配一條唯一的id,這些id還需要一些大致的順序(方便客戶端排序),並且在分布式系統中不同機器產生的id必須不同。各種主鍵ID生成策略對比,見 常見分布式主鍵ID生成策略
把 41位的時間前綴 , 10位的節點標識 , 12位的sequence 組合在一起。
除了最高位bit標記為不可用以外,其餘三組bit佔位均可浮動,看具體的業務需求而定。 默認情況下41bit的時間戳,1970年算起可以支持該演算法使用到2038年,10bit的工作機器id可以支持1024台機器,序列號支持1毫秒產生4096個自增序列id 。
Snowflake是Twitter在2010年用Scala語言寫的一套主鍵生成策略,用Thrift對外發布主鍵生成服務,其中依賴了Twitter內部的Infrastructure,後來Twitter用 Twitter-server 代替了Snowflake,自2012年起就未更新。見 Twitter-Snowflake項目地址(Tags:snowflake-2010)
之前寫了一個Java的實現,改自網上一個版本: Twitter的分布式自增ID演算法Snowflake實現分析及其Java、Php和Python版 。後來看到當當網的 Sharding-JDBC 分庫分表中間件已實現了此演算法。就直接在其中添加了一些新特性,已merge。( 具體實現 , 說明文檔 )
添加3種IdGenerator實現。
用筆記本(i7-3632QM 2.2GHz 四核八線程)測試了下,每秒生成409萬(理論上的峰值),CPU佔用率18.5%。
❼ MySQL資料庫性能優化之分區分表分庫
分表是分散資料庫壓力的好方法。
分表,最直白的意思,就是將一個表結構分為多個表,然後,可以再同一個庫里,也可以放到不同的庫。
當然,首先要知道什麼情況下,才需要分表。個人覺得單表記錄條數達到百萬到千萬級別時就要使用分表了。
分表的分類
**1、縱向分表**
將本來可以在同一個表的內容,人為劃分為多個表。(所謂的本來,是指按照關系型資料庫的第三範式要求,是應該在同一個表的。)
分表理由:根據數據的活躍度進行分離,(因為不同活躍的數據,處理方式是不同的)
案例:
對於一個博客系統,文章標題,作者,分類,創建時間等,是變化頻率慢,查詢次數多,而且最好有很好的實時性的數據,我們把它叫做冷數據。而博客的瀏覽量,回復數等,類似的統計信息,或者別的變化頻率比較高的數據,我們把它叫做活躍數據。所以,在進行資料庫結構設計的時候,就應該考慮分表,首先是縱向分表的處理。
這樣縱向分表後:
首先存儲引擎的使用不同,冷數據使用MyIsam 可以有更好的查詢數據。活躍數據,可以使用Innodb ,可以有更好的更新速度。
其次,對冷數據進行更多的從庫配置,因為更多的操作時查詢,這樣來加快查詢速度。對熱數據,可以相對有更多的主庫的橫向分表處理。
其實,對於一些特殊的活躍數據,也可以考慮使用memcache ,redis之類的緩存,等累計到一定量再去更新資料庫。或者mongodb 一類的nosql 資料庫,這里只是舉例,就先不說這個。
**2、橫向分表**
字面意思,就可以看出來,是把大的表結構,橫向切割為同樣結構的不同表,如,用戶信息表,user_1,user_2等。表結構是完全一樣,但是,根據某些特定的規則來劃分的表,如根據用戶ID來取模劃分。
分表理由:根據數據量的規模來劃分,保證單表的容量不會太大,從而來保證單表的查詢等處理能力。
案例:同上面的例子,博客系統。當博客的量達到很大時候,就應該採取橫向分割來降低每個單表的壓力,來提升性能。例如博客的冷數據表,假如分為100個表,當同時有100萬個用戶在瀏覽時,如果是單表的話,會進行100萬次請求,而現在分表後,就可能是每個表進行1萬個數據的請求(因為,不可能絕對的平均,只是假設),這樣壓力就降低了很多很多。
延伸:為什麼要分表和分區?
日常開發中我們經常會遇到大表的情況,所謂的大表是指存儲了百萬級乃至千萬級條記錄的表。這樣的表過於龐大,導致資料庫在查詢和插入的時候耗時太長,性能低下,如果涉及聯合查詢的情況,性能會更加糟糕。分表和表分區的目的就是減少資料庫的負擔,提高資料庫的效率,通常點來講就是提高表的增刪改查效率。
什麼是分表?
分表是將一個大表按照一定的規則分解成多張具有獨立存儲空間的實體表,我們可以稱為子表,每個表都對應三個文件,MYD數據文件,.MYI索謹鋒引文件,.frm表結構文件。這些子表可以分布在同一塊磁碟上,也可以在不同的機器上。app讀寫的時候根據事先定義好的規則得到對應的子表名,然後去操作它。
什麼是分區?
分區和分表相似,都是按照規則分解表。不同在於分表將大表分解為若干個獨立的實體表,而分區是將數據分段劃分在多個位置存放,可以是同一塊磁碟也可以在不同的機器。分區後旅晌譽,表面上還是一張表,但數據散列到多個位置了。app讀寫的時候操作的還是大表名字,db自動去組織分區的數據。
**MySQL分表和分區有什麼聯系呢?**
1、都能提高mysql的性高,在高並發狀態下都有一個良好的表現。
2、分表和分區不矛盾,可以相互配合的,對於那些大訪問量,並且表數據比較多的表,我們可以採取分表和分區結合的方式(如果merge這種分表方式,不能和分區配合的話,可以拆段用其他的分表試),訪問量不大,但是表數據很多的表,我們可以採取分區的方式等。
3、分表技術是比較麻煩的,需要手動去創建子表,app服務端讀寫時候需要計運算元表名。採用merge好一些,但也要創建子表和配置子表間的union關系。
4、表分區相對於分表,操作方便,不需要創建子表。
我們知道對於大型的互聯網應用,資料庫單表的數據量可能達到千萬甚至上億級別,同時面臨這高並發的壓力。Master-Slave結構只能對資料庫的讀能力進行擴展,寫操作還是集中在Master中,Master並不能無限制的掛接Slave庫,如果需要對資料庫的吞吐能力進行進一步的擴展,可以考慮採用分庫分表的策略。
**1、分表**
在分表之前,首先要選中合適的分表策略(以哪個字典為分表欄位,需要將數據分為多少張表),使數據能夠均衡的分布在多張表中,並且不影響正常的查詢。在企業級應用中,往往使用org_id(組織主鍵)做為分表欄位,在互聯網應用中往往是userid。在確定分表策略後,當數據進行存儲及查詢時,需要確定到哪張表裡去查找數據,
數據存放的數據表 = 分表欄位的內容 % 分表數量
**2、分庫**
分表能夠解決單表數據量過大帶來的查詢效率下降的問題,但是不能給資料庫的並發訪問帶來質的提升,面對高並發的寫訪問,當Master無法承擔高並發的寫入請求時,不管如何擴展Slave伺服器,都沒有意義了。我們通過對資料庫進行拆分,來提高資料庫的寫入能力,即所謂的分庫。分庫採用對關鍵字取模的方式,對資料庫進行路由。
數據存放的資料庫=分庫欄位的內容%資料庫的數量
**3、即分表又分庫**
資料庫分表可以解決單表海量數據的查詢性能問題,分庫可以解決單台資料庫的並發訪問壓力問題。
當資料庫同時面臨海量數據存儲和高並發訪問的時候,需要同時採取分表和分庫策略。一般分表分庫策略如下:
中間變數 = 關鍵字%(資料庫數量*單庫數據表數量)
庫 = 取整(中間變數/單庫數據表數量)
表 = (中間變數%單庫數據表數量)
實例:
1、分庫分表
很明顯,一個主表(也就是很重要的表,例如用戶表)無限制的增長勢必嚴重影響性能,分庫與分表是一個很不錯的解決途徑,也就是性能優化途徑,現在的案例是我們有一個1000多萬條記錄的用戶表members,查詢起來非常之慢,同事的做法是將其散列到100個表中,分別從members0到members99,然後根據mid分發記錄到這些表中,牛逼的代碼大概是這樣子:
復制代碼 代碼如下:
<?php
for($i=0;$i< 100; $i++ ){
//echo "CREATE TABLE db2.members{$i} LIKE db1.members
";
echo "INSERT INTO members{$i} SELECT * FROM members WHERE mid%100={$i}
";
}
?>
2、不停機修改mysql表結構
同樣還是members表,前期設計的表結構不盡合理,隨著資料庫不斷運行,其冗餘數據也是增長巨大,同事使用了下面的方法來處理:
先創建一個臨時表:
/*創建臨時表*/
CREATE TABLE members_tmp LIKE members
然後修改members_tmp的表結構為新結構,接著使用上面那個for循環來導出數據,因為1000萬的數據一次性導出是不對的,mid是主鍵,一個區間一個區間的導,基本是一次導出5萬條吧,這里略去了
接著重命名將新表替換上去:
/*這是個頗為經典的語句哈*/
RENAME TABLE members TO members_bak,members_tmp TO members;
就是這樣,基本可以做到無損失,無需停機更新表結構,但實際上RENAME期間表是被鎖死的,所以選擇在線少的時候操作是一個技巧。經過這個操作,使得原先8G多的表,一下子變成了2G多。