① 前向神經是什麼類型的神經網路
神經網路有前饋神經網路和反饋神經網路,虧模前向神經網路也就是前饋神經網路。x0dx0a前饋型網路x0dx0a各銷脊緩神經元接收前一層的輸入,並輸出給下一層,沒有反饋。節點分為兩類,即輸入節點和計算節點,每一個計算節點可有多個輸入,但只有一個輸出,通常前饋型網路可分為不同的層,第i層的輸入只與第i-1層的輸出相連,輸入與輸出節點與外界相連,而其他中間層則稱為隱層。x0dx0a反饋型網路x0dx0a所有節點都是計算節點,同時可接收輸入,並向外界輸出。野頌x0dx0ax0dx0a常見的前饋神經網路有BP網路,RBF網路等.
② 2.前饋型神經網路與反饋型神經網路
隨著神經網路的不斷發展,越來越多的人工神經網路模型也被創造出來了,其中,具有代表性的就是前饋型神經網路模型以及反饋型神經網路模型。 1.前饋型神經網路模型 前饋神經網路(Feedforward Neural Network),簡稱前饋網路,是人工神經網路的一種。在此種神經網路中,各神經元從輸入層開始,接收前一級輸入,並輸出到下一級,直至輸出層。整個網路中無反饋,可用一個有向無環圖表示。 前饋神經網路採用一種單向多層結構,其拓撲結構如圖1所示。其中每一層包含若干個神經元,同一層的神經元之間沒有互相連接,層間信息的傳送只沿一個方向進行。其中第一層稱為輸入層。最後一層為輸出層.中間為隱含層,簡稱隱層。隱層可以是一層。也可以是多層 2.反饋型神經神經網路 反饋神經網路是一種反饋動力學系統。在這種網路中,每個神經元同時將自身的輸出信號作為輸入信號反饋給其他神經元,它需要工作一段時間才能達到穩定。Hopfield神經網路是反饋網路中最簡單且應用廣泛的模型,它具有聯想記憶的功能,如果將李雅普諾夫函數定義為巡遊函數,Hopfield神經網路還可以用來解決快速尋優問題,Hopfield網路可以分為離散型Hopfield網路和連續型Hopfield網路,其中,離散型Hopfield網路拓撲結構如圖2所示。③ 一文看懂四種基本的神經網路架構
原文鏈接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/
更多干貨就在我的個人博客 http://blackblog.tech 歡迎關注
剛剛入門神經網路,往往會對眾多的神經網路架構感到困惑,神經網路看起來復雜多樣,但是這么多架構無非也就是三類,前饋神經網路,循環網路,對稱連接網路,本文將介紹四種常見的神經網路,分別是CNN,RNN,DBN,GAN。通過這四種基本的神經網路架構,我們來對神經網路進行一定的了解。
神經網路是機器學習中的一種模型,是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
一般來說,神經網路的架構可以分為三類:
前饋神經網路:
這是實際應用中最常見的神經網路類型。第一層是輸入,最後一層是輸出。如果有多個隱藏層,我們稱之為「深度」神經網路。他們計算出一系列改變樣本相似性的變換。各層神經元的活動是前一層活動的非線性函數。
循環網路:
循環網路在他們的連接圖中定向了循環,這意味著你可以按照箭頭回到你開始的地方。他們可以有復雜的動態,使其很難訓練。他們更具有生物真實性。
循環網路的目的使用來處理序列數據。在傳統的神經網路模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層之間的節點是無連接的。但是這種普通的神經網路對於很多問題卻無能無力。例如,你要預測句子的下一個單詞是什麼,一般需要用到前面的單詞,因為一個句子中前後單詞並不是獨立的。
循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。
對稱連接網路:
對稱連接網路有點像循環網路,但是單元之間的連接是對稱的(它們在兩個方向上權重相同)。比起循環網路,對稱連接網路更容易分析。這個網路中有更多的限制,因為它們遵守能量函數定律。沒有隱藏單元的對稱連接網路被稱為「Hopfield 網路」。有隱藏單元的對稱連接的網路被稱為玻爾茲曼機。
其實之前的帖子講過一些關於感知機的內容,這里再復述一下。
首先還是這張圖
這是一個M-P神經元
一個神經元有n個輸入,每一個輸入對應一個權值w,神經元內會對輸入與權重做乘法後求和,求和的結果與偏置做差,最終將結果放入激活函數中,由激活函數給出最後的輸出,輸出往往是二進制的,0 狀態代表抑制,1 狀態代表激活。
可以把感知機看作是 n 維實例空間中的超平面決策面,對於超平面一側的樣本,感知器輸出 1,對於另一側的實例輸出 0,這個決策超平面方程是 w⋅x=0。 那些可以被某一個超平面分割的正反樣例集合稱為線性可分(linearly separable)樣例集合,它們就可以使用圖中的感知機表示。
與、或、非問題都是線性可分的問題,使用一個有兩輸入的感知機能容易地表示,而異或並不是一個線性可分的問題,所以使用單層感知機是不行的,這時候就要使用多層感知機來解決疑惑問題了。
如果我們要訓練一個感知機,應該怎麼辦呢?
我們會從隨機的權值開始,反復地應用這個感知機到每個訓練樣例,只要它誤分類樣例就修改感知機的權值。重復這個過程,直到感知機正確分類所有的樣例。每一步根據感知機訓練法則來修改權值,也就是修改與輸入 xi 對應的權 wi,法則如下:
這里 t 是當前訓練樣例的目標輸出,o 是感知機的輸出,η 是一個正的常數稱為學習速率。學習速率的作用是緩和每一步調整權的程度,它通常被設為一個小的數值(例如 0.1),而且有時會使其隨著權調整次數的增加而衰減。
多層感知機,或者說是多層神經網路無非就是在輸入層與輸出層之間加了多個隱藏層而已,後續的CNN,DBN等神經網路只不過是將重新設計了每一層的類型。感知機可以說是神經網路的基礎,後續更為復雜的神經網路都離不開最簡單的感知機的模型,
談到機器學習,我們往往還會跟上一個詞語,叫做模式識別,但是真實環境中的模式識別往往會出現各種問題。比如:
圖像分割:真實場景中總是摻雜著其它物體。很難判斷哪些部分屬於同一個對象。對象的某些部分可以隱藏在其他對象的後面。
物體光照:像素的強度被光照強烈影響。
圖像變形:物體可以以各種非仿射方式變形。例如,手寫也可以有一個大的圓圈或只是一個尖頭。
情景支持:物體所屬類別通常由它們的使用方式來定義。例如,椅子是為了讓人們坐在上面而設計的,因此它們具有各種各樣的物理形狀。
卷積神經網路與普通神經網路的區別在於,卷積神經網路包含了一個由卷積層和子采樣層構成的特徵抽取器。在卷積神經網路的卷積層中,一個神經元只與部分鄰層神經元連接。在CNN的一個卷積層中,通常包含若干個特徵平面(featureMap),每個特徵平面由一些矩形排列的的神經元組成,同一特徵平面的神經元共享權值,這里共享的權值就是卷積核。卷積核一般以隨機小數矩陣的形式初始化,在網路的訓練過程中卷積核將學習得到合理的權值。共享權值(卷積核)帶來的直接好處是減少網路各層之間的連接,同時又降低了過擬合的風險。子采樣也叫做池化(pooling),通常有均值子采樣(mean pooling)和最大值子采樣(max pooling)兩種形式。子采樣可以看作一種特殊的卷積過程。卷積和子采樣大大簡化了模型復雜度,減少了模型的參數。
卷積神經網路由三部分構成。第一部分是輸入層。第二部分由n個卷積層和池化層的組合組成。第三部分由一個全連結的多層感知機分類器構成。
這里舉AlexNet為例:
·輸入:224×224大小的圖片,3通道
·第一層卷積:11×11大小的卷積核96個,每個GPU上48個。
·第一層max-pooling:2×2的核。
·第二層卷積:5×5卷積核256個,每個GPU上128個。
·第二層max-pooling:2×2的核。
·第三層卷積:與上一層是全連接,3*3的卷積核384個。分到兩個GPU上個192個。
·第四層卷積:3×3的卷積核384個,兩個GPU各192個。該層與上一層連接沒有經過pooling層。
·第五層卷積:3×3的卷積核256個,兩個GPU上個128個。
·第五層max-pooling:2×2的核。
·第一層全連接:4096維,將第五層max-pooling的輸出連接成為一個一維向量,作為該層的輸入。
·第二層全連接:4096維
·Softmax層:輸出為1000,輸出的每一維都是圖片屬於該類別的概率。
卷積神經網路在模式識別領域有著重要應用,當然這里只是對卷積神經網路做了最簡單的講解,卷積神經網路中仍然有很多知識,比如局部感受野,權值共享,多卷積核等內容,後續有機會再進行講解。
傳統的神經網路對於很多問題難以處理,比如你要預測句子的下一個單詞是什麼,一般需要用到前面的單詞,因為一個句子中前後單詞並不是獨立的。RNN之所以稱為循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。理論上,RNN能夠對任何長度的序列數據進行處理。
這是一個簡單的RNN的結構,可以看到隱藏層自己是可以跟自己進行連接的。
那麼RNN為什麼隱藏層能夠看到上一刻的隱藏層的輸出呢,其實我們把這個網路展開來開就很清晰了。
從上面的公式我們可以看出,循環層和全連接層的區別就是循環層多了一個權重矩陣 W。
如果反復把式2帶入到式1,我們將得到:
在講DBN之前,我們需要對DBN的基本組成單位有一定的了解,那就是RBM,受限玻爾茲曼機。
首先什麼是玻爾茲曼機?
[圖片上傳失敗...(image-d36b31-1519636788074)]
如圖所示為一個玻爾茲曼機,其藍色節點為隱層,白色節點為輸入層。
玻爾茲曼機和遞歸神經網路相比,區別體現在以下幾點:
1、遞歸神經網路本質是學習一個函數,因此有輸入和輸出層的概念,而玻爾茲曼機的用處在於學習一組數據的「內在表示」,因此其沒有輸出層的概念。
2、遞歸神經網路各節點鏈接為有向環,而玻爾茲曼機各節點連接成無向完全圖。
而受限玻爾茲曼機是什麼呢?
最簡單的來說就是加入了限制,這個限制就是將完全圖變成了二分圖。即由一個顯層和一個隱層構成,顯層與隱層的神經元之間為雙向全連接。
h表示隱藏層,v表示顯層
在RBM中,任意兩個相連的神經元之間有一個權值w表示其連接強度,每個神經元自身有一個偏置系數b(對顯層神經元)和c(對隱層神經元)來表示其自身權重。
具體的公式推導在這里就不展示了
DBN是一個概率生成模型,與傳統的判別模型的神經網路相對,生成模型是建立一個觀察數據和標簽之間的聯合分布,對P(Observation|Label)和 P(Label|Observation)都做了評估,而判別模型僅僅而已評估了後者,也就是P(Label|Observation)。
DBN由多個限制玻爾茲曼機(Restricted Boltzmann Machines)層組成,一個典型的神經網路類型如圖所示。這些網路被「限制」為一個可視層和一個隱層,層間存在連接,但層內的單元間不存在連接。隱層單元被訓練去捕捉在可視層表現出來的高階數據的相關性。
生成對抗網路其實在之前的帖子中做過講解,這里在說明一下。
生成對抗網路的目標在於生成,我們傳統的網路結構往往都是判別模型,即判斷一個樣本的真實性。而生成模型能夠根據所提供的樣本生成類似的新樣本,注意這些樣本是由計算機學習而來的。
GAN一般由兩個網路組成,生成模型網路,判別模型網路。
生成模型 G 捕捉樣本數據的分布,用服從某一分布(均勻分布,高斯分布等)的雜訊 z 生成一個類似真實訓練數據的樣本,追求效果是越像真實樣本越好;判別模型 D 是一個二分類器,估計一個樣本來自於訓練數據(而非生成數據)的概率,如果樣本來自於真實的訓練數據,D 輸出大概率,否則,D 輸出小概率。
舉個例子:生成網路 G 好比假幣製造團伙,專門製造假幣,判別網路 D 好比警察,專門檢測使用的貨幣是真幣還是假幣,G 的目標是想方設法生成和真幣一樣的貨幣,使得 D 判別不出來,D 的目標是想方設法檢測出來 G 生成的假幣。
傳統的判別網路:
生成對抗網路:
下面展示一個cDCGAN的例子(前面帖子中寫過的)
生成網路
判別網路
最終結果,使用MNIST作為初始樣本,通過學習後生成的數字,可以看到學習的效果還是不錯的。
本文非常簡單的介紹了四種神經網路的架構,CNN,RNN,DBN,GAN。當然也僅僅是簡單的介紹,並沒有深層次講解其內涵。這四種神經網路的架構十分常見,應用也十分廣泛。當然關於神經網路的知識,不可能幾篇帖子就講解完,這里知識講解一些基礎知識,幫助大家快速入(zhuang)門(bi)。後面的帖子將對深度自動編碼器,Hopfield 網路長短期記憶網路(LSTM)進行講解。
④ 前饋神經網路、BP神經網路、卷積神經網路的區別與聯系
一、計算方法不同
1、前饋神經網路:一種最簡單的神經網路,各神經元分層排列。每個神經元只與前一層的神經元相連。接收前一層的輸出,並輸出給下一層.各層間沒有反饋。
2、BP神經網路:是一種按照誤差逆向傳播演算法訓練的多層前饋神經網路。
3、卷積神經網路:包含卷積計算且具有深度結構的前饋神經網路。
二、用途不同
1、前饋神經網路:主要應用包括感知器網路、BP網路和RBF網路。
2、BP神經網路:
(1)函數逼近:用輸入向量和相應的輸出向量訓練一個網路逼近一個函數;
(2)模式識別:用一個待定的輸出向量將它與輸入向量聯系起來;
(3)分類:把輸入向量所定義的合適方式進行分類;
(4)數據壓縮:減少輸出向量維數以便於傳輸或存儲。
3、卷積神經網路:可應用於圖像識別、物體識別等計算機視覺、自然語言處理、物理學和遙感科學等領域。
聯系:
BP神經網路和卷積神經網路都屬於前饋神經網路,三者都屬於人工神經網路。因此,三者原理和結構相同。
三、作用不同
1、前饋神經網路:結構簡單,應用廣泛,能夠以任意精度逼近任意連續函數及平方可積函數.而且可以精確實現任意有限訓練樣本集。
2、BP神經網路:具有很強的非線性映射能力和柔性的網路結構。網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。
3、卷積神經網路:具有表徵學習能力,能夠按其階層結構對輸入信息進行平移不變分類。
(4)前饋型神經網路和反饋型神經網路擴展閱讀:
1、BP神經網路優劣勢
BP神經網路無論在網路理論還是在性能方面已比較成熟。其突出優點就是具有很強的非線性映射能力和柔性的網路結構。網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。但是BP神經網路也存在以下的一些主要缺陷。
①學習速度慢,即使是一個簡單的問題,一般也需要幾百次甚至上千次的學習才能收斂。
②容易陷入局部極小值。
③網路層數、神經元個數的選擇沒有相應的理論指導。
④網路推廣能力有限。
2、人工神經網路的特點和優越性,主要表現在以下三個方面
①具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、效益預測,其應用前途是很遠大的。
②具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。
③具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。
⑤ 前饋型神經網路中各個層之間是什麼的
前饋型神經網鎮瞎段絡的中各個層之間是無環的,反饋型神經網路中各個層之間是有環的。⑥ (七)神經網路基本結構
目前為止,我們已經學習了2個機器學習模型。線性回歸一般用來處理線性問題,邏輯回歸用來處理2分類問題。雖然邏輯回歸也可以處理非線性的分類問題,但是當我們有非常多的特徵時,例如大於100個變數,將會有數量非常驚人的特徵組合。這對於一般的邏輯回歸來說需要計算的特徵太多了,負荷太大。而神經網路既可以答衫解決復雜的非線性分類問題,又可以避免龐大的計算量。
人工神經網路是由很多神經元(激活單元)構成的,神經元是神經網路的基本元素。
實際上,可以這樣理解神經元工作過程,當將輸入送進神經元後,神經元將輸入與權值線性組合(實際上就是θ T X)輸出一個線性表達式,再將這個表達式送嘩舉拿入激活函數中,便得到了神經元的真實輸出。
神經網路由好多個激活單元構成,如下圖所示:
激活函數的選擇是構建神經網路過程中的重要環節,下面簡要介紹常用的激活函數。
(1) 線性函數( Liner Function )
(2) 斜面函數( Ramp Function )**
(3) 閾值函數( Threshold Function )**
以上3個激活函數都屬於線性函數,下面介紹兩個常用的非線性激活函數。
(4) S形函數( Sigmoid Function )
S形函數與雙極S形函數的圖像如下:
雙極S形函數與S形函數主要區別在於函數的值域,雙極S形函數值域是(-1,1),而S形函數值域是(0,1)。由於S形函數與雙極S形函數都是 可導的 (導函數是連續函數),因此適合用在BP神經亂搭網路中。(BP演算法要求激活函數可導)
人工神經網路中,最常用的激活函數就是sigmoid函數
神經網路是由大量的神經元互聯而構成的網路。根據網路中神經元的互聯方式,常見網路結構主要可以分為下面3類:
前饋網路也稱前向網路,是最常見的神經網路,前文提到的都是前饋網路。稱之為前饋是因為它在輸出和模型本身之間沒有反饋,數據只能向前傳送,直到到達輸出層,層間沒有向後的反饋信號。
反饋型神經網路是一種從輸出到輸入具有反饋連接的神經網路,其結構比前饋網路要復雜得多。
自組織神經網路是一種無監督學習網路。它通過自動尋找樣本中的內在規律和本質屬性,自組織、自適應地改變網路參數與結構。
⑦ 前饋型神經網路和反饋型神經網路之間的聯系和區別
前饋型神經網路和反饋型神經網路都是人工神經網路的一種,但它們在神經元之間連接的方式和信息傳遞的方式上存在區別。具體來說:
1、連接方式不同:前饋型神經網路中,神經元之間只存在向前的連接,即輸入層的神經元只與隱藏層的神經元相連,隱藏層的神經元也只與輸出層的神經元相連。而反饋型神經網路中,神經元之間可能存在循環連接,因此信息可以在神經燃大元之間反復傳遞。
2、信息傳遞方式不同:前饋型神經網路的信息傳遞是單向的,從輸入層到輸出層,沒有回饋。而反饋型神經網路存在反饋機制,信息可以從輸出層返回到輸入層或中間層,並影響網路的輸出結果。
3、應用場景不同:由於反饋型神經網路具有記憶功能,能夠處理帶有時序關系的數據,因此祥段備在語音識別、時間序列預測等領域有著廣泛的應用。而前饋型神經網路則更適合處理非時序數據問題,如圖像分類、文本分類等。
4、並行計算能力強:人工神經網路的計算過程可以進行並行處理,能夠處理大量的數據和高維度的數據。
5、可自適應:人工神經網路可以根據不同的任務和需求進行自適應調整,能夠有效地處理不同類型的數據和問題。
6、模式識別能力強:人工神經網路可以通過學習和訓練來識別和分類不同的模式和對象,能夠應用於圖像識別、語音識別等領域。
總的來說,人工神經網路具有適應性強、學習能力強、容錯性好、計算能力強等優點,可以應用於多種領域和問題中。同時,由於其模擬人腦神經元的方式,也有一定的生物學啟示意義。
⑧ 前饋式神經網路與反饋式神經網路有何不同
前饋式神經網路和反饋式神經網路是兩種主要的神經網路架構。
前饋式神經網路是信息在網路中單向流動的結構,它的信息只能從輸入層流向輸出層。常見的遲掘慎前饋式神經網路有多層感知器和卷積神經網路。
反饋散鎮式神經網路是信息在網路中雙碼敬向流動的結構,信息可以從輸入層流向輸出層,也可以從輸出層流回輸入層。常見的反饋式神經網路有循環神經網路和遞歸神經網路。
前饋式神經網路適用於靜態任務,而反饋式神經網路適用於動態任務。
⑨ 神經網路可以按什麼分類
1、按照網路拓樸結構分類網路的拓樸結構,即神經元之間的連接方式。按此劃分,可將神經網路結構分為兩大類:層次型結構和互聯型結構。層次型結構的神經網路將神經元按功能和順序的不同分肆含為輸出層、中間層(隱層)、輸出層。輸出層各神經元負責接收來自外界的輸入信息,並傳給中間嫌棚各隱層神經元;隱層是神經網路的內部信息處理層,負責信息變換。根據需要可設計為一層或多層;最後一個隱層將信息傳遞給輸出層神經元經進一步處理後向外界輸出信息處理結果。
而互連型網路結構中,任意兩個節點之間都可能存在連接路徑,因此可以根據網路中節點的連接程度將互連型網路細分為三種情況:全互連型、局部互連型和稀疏連接型
2、按照網路信息流向分類
從神經網路內部信息傳遞方向來看,可以分為裂者笑兩種類型:前饋型網路和反饋型網路。
單純前饋網路的結構與分層網路結構相同,前饋是因網路信息處理的方向是從輸入層到各隱層再到輸出層逐層進行而得名的.。前饋型網路中前一層的輸出是下一層的輸入,信息的處理具有逐層傳遞進行的方向性,一般不存在反饋環路。因此這類網路很容易串聯起來建立多層前饋網路。
反饋型網路的結構與單層全互連結構網路相同。在反饋型網路中的所有節點都具有信息處理功能,而且每個節點既可以從外界接受輸入,同時又可以向外界輸出。