newff 創建前向BP網路格式:
net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
其中:PR —— R維輸入元素的R×2階最大最小值矩陣; Si —— 第i層神經元的個數,共N1層; TFi——第i層的轉移函數,默認『tansig』; BTF—— BP網路的訓練函數,默認『trainlm』; BLF—— BP權值/偏差學習函數,默認』learngdm』 PF ——性能函數,默認『mse』;(誤差)
e.g.
P = [0 1 2 3 4 5 6 7 8 9 10];T = [0 1 2 3 4 3 2 1 2 3 4];
net = newff([0 10],[5 1],{'tansig' 'purelin'});net.trainparam.show=50; %每次循環50次net.trainParam.epochs = 500; %最大循環500次
net.trainparam.goal=0.01; %期望目標誤差最小值
net = train(net,P,T); %對網路進行反復訓練
Y = sim(net,P)Figure % 打開另外一個圖形窗口
plot(P,T,P,Y,'o')
『貳』 如何用代碼編寫一個神經網路異或運算器
配置環境、安裝合適的庫、下載數據集……有時候學習深度學習的前期工作很讓人沮喪,如果只是為了試試現在人人都談的深度學習,做這些麻煩事似乎很不值當。但好在我們也有一些更簡單的方法可以體驗深度學習。近日,編程學習平台 Scrimba 聯合創始人 Per Harald Borgen 在 Medium 上發文介紹了一種僅用30行 JavaScript 代碼就創建出了一個神經網路的教程,而且使用的工具也只有 Node.js、Synaptic.js 和瀏覽器而已。另外,作者還做了一個互動式 Scrimba 教程,也許能幫你理解其中的復雜概念。
Synaptic.js:http://synaptic.juancazala.com
Node.js:http://nodejs.org
Scrimba 教程:http://scrimba.com/casts/cast-1980
Synaptic.js 讓你可以使用 Node.js 和瀏覽器做深度學習。在這篇文章中,我將介紹如何使用 Synaptic.js 創建和訓練神經網路。
//創建網路const { Layer, Network }= window.synaptic;var inputLayer = new Layer(2);var hiddenLayer = new Layer(3);var outputLayer = new Layer(1);
inputLayer.project(hiddenLayer);
hiddenLayer.project(outputLayer);var myNetwork = new Network({
input: inputLayer,
hidden:[hiddenLayer],
output: outputLayer
});//訓練網路——學習異或運算var learningRate =.3;for (var i =0; i <20000; i++)
{//0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}//測試網路console.log(myNetwork.activate([0,0]));//[0.0]console.log(myNetwork.activate([0,1]));//[0.]console.log(myNetwork.activate([1,0]));//[0.]console.log(myNetwork.activate([1,1]));//[0.0]
我們將創建一個最簡單的神經網路:一個可以執行異或運算的網路。上面就是這個網路的全部代碼,但在我們深入解讀這些代碼之前,首先我們先了解一下神經網路的基礎知識。
神經元和突觸
神經網路的基本構造模塊是神經元。神經元就像是一個函數,有幾個輸入,然後可以得到一個輸出。神經元的種類有很多。我們的網路將使用 sigmoid 神經元,它可以輸入任何數字並將其壓縮到0 到1 之間。下圖就是一個 sigmoid 神經元。它的輸入是5,輸出是1。箭頭被稱為突觸,可以將該神經元與網路中的其它層連接到一起。
現在訓練這個網路:
// train the network - learn XORvar learningRate =.3;for (var i =0; i <20000; i++){ //0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}
這里我們運行該網路20000次。每一次我們都前向和反向傳播4 次,為該網路輸入4 組可能的輸入:[0,0][0,1][1,0][1,1]。
首先我們執行 myNetwork.activate([0,0]),其中[0,0]是我們發送給該網路的數據點。這是前向傳播,也稱為激活這個網路。在每次前向傳播之後,我們需要執行反向傳播,這時候網路會更新自己的權重和偏置。
反向傳播是通過這行代碼完成的:myNetwork.propagate(learningRate,[0]),其中 learningRate 是一個常數,給出了網路每次應該調整的權重的量。第二個參數0 是給定輸入[0,0]對應的正確輸出。
然後,該網路將自己的預測與正確的標簽進行比較,從而了解自己的正確程度有多少。
然後網路使用這個比較為基礎來校正自己的權重和偏置值,這樣讓自己的下一次猜測更加正確一點。
這個過程如此反復20000次之後,我們可以使用所有四種可能的輸入來檢查網路的學習情況:
->[0.0]console.log(myNetwork.activate([0,1]));
->[0.]console.log(myNetwork.activate([1,0]));
->[0.]console.log(myNetwork.activate([1,1]));
->[0.0]
如果我們將這些值四捨五入到最近的整數,我們就得到了正確的異或運算結果。
這樣就完成了。盡管這僅僅只碰到了神經網路的表皮,但也足以幫助你進一步探索 Synaptic 和繼續學習了。http://github.com/cazala/synaptic/wiki 這里還包含了更多好教程。
『叄』 有沒有用python實現的遺傳演算法優化BP神經網路的代碼
下面是函數實現的代碼部分:
clc
clear all
close all
%% 載入神經網路的訓練樣本 測試樣本每列一個樣本 輸入P 輸出T,T是標簽
%樣本數據就是前面問題描述中列出的數據
%epochs是計算時根據輸出誤差返回調整神經元權值和閥值的次數
load data
% 初始隱層神經元個數
hiddennum=31;
% 輸入向量的最大值和最小值
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];
inputnum=size(P,1); % 輸入層神經元個數
outputnum=size(T,1); % 輸出層神經元個數
w1num=inputnum*hiddennum; % 輸入層到隱層的權值個數
w2num=outputnum*hiddennum;% 隱層到輸出層的權值個數
N=w1num+hiddennum+w2num+outputnum; %待優化的變數的個數
%% 定義遺傳演算法參數
NIND=40; %個體數目
MAXGEN=50; %最大遺傳代數
PRECI=10; %變數的二進制位數
GGAP=0.95; %代溝
px=0.7; %交叉概率
pm=0.01; %變異概率
trace=zeros(N+1,MAXGEN); %尋優結果的初始值
FieldD=[repmat(PRECI,1,N);repmat([-0.5;0.5],1,N);repmat([1;0;1;1],1,N)]; %區域描述器
Chrom=crtbp(NIND,PRECI*N); %初始種群
%% 優化
gen=0; %代計數器
X=bs2rv(Chrom,FieldD); %計算初始種群的十進制轉換
ObjV=Objfun(X,P,T,hiddennum,P_test,T_test); %計算目標函數值
while gen
『肆』 matlab中用RBF神經網路做預測的代碼怎麼寫
clc;
clearall;
closeall;
%%----
c_1=[00];
c_2=[11];
c_3=[01];
c_4=[10];
n_L1=20;%numberoflabel1
n_L2=20;%numberoflabel2
A=zeros(n_L1*2,3);
A(:,3)=1;
B=zeros(n_L2*2,3);
B(:,3)=0;
%createrandompoints
fori=1:n_L1
A(i,1:2)=c_1+rand(1,2)/2;
A(i+n_L1,1:2)=c_2+rand(1,2)/2;
end
fori=1:n_L2
B(i,1:2)=c_3+rand(1,2)/2;
B(i+n_L2,1:2)=c_4+rand(1,2)/2;
end
%showpoints
scatter(A(:,1),A(:,2),[],'r');
holdon
scatter(B(:,1),B(:,2),[],'g');
X=[A;B];
data=X(:,1:2);
label=X(:,3);
%%Usingkmeanstofindcintervector
n_center_vec=10;
rng(1);
[idx,C]=kmeans(data,n_center_vec);
holdon
scatter(C(:,1),C(:,2),'b','LineWidth',2);
%%Calulatesigma
n_data=size(X,1);
%calculateK
K=zeros(n_center_vec,1);
fori=1:n_center_vec
K(i)=numel(find(idx==i));
end
%
%thencalucatesigma
sigma=zeros(n_center_vec,1);
fori=1:n_center_vec
[n,d]=knnsearch(data,C(i,:),'k',K(i));
L2=(bsxfun(@minus,data(n,:),C(i,:)).^2);
L2=sum(L2(:));
sigma(i)=sqrt(1/K(i)*L2);
end
%%Calutateweights
%kernelmatrix
k_mat=zeros(n_data,n_center_vec);
fori=1:n_center_vec
r=bsxfun(@minus,data,C(i,:)).^2;
r=sum(r,2);
k_mat(:,i)=exp((-r.^2)/(2*sigma(i)^2));
end
W=pinv(k_mat'*k_mat)*k_mat'*label;
y=k_mat*W;
%y(y>=0.5)=1;
%y(y<0.5)=0;
%%
[W1,sigma1,C1]=RBF_training(data,label,10);
y1=RBF_predict(data,W,sigma,C1);
[W2,sigma2,C2]=lazyRBF_training(data,label,2);
y2=RBF_predict(data,W2,sigma2,C2);
(4)神經網路代碼擴展閱讀
matlab的特點
1、具有完備的圖形處理功能,實現計算結果和編程的可視化;
2、友好的用戶界面及接近數學表達式的自然化語言,使學者易於學習和掌握;
3、功能豐富的應用工具箱(如信號處理工具箱、通信工具箱等) ,為用戶提供了大量方便實用的處理工具。
『伍』 求預測一組數據的bp神經網路模型的matlab代碼
用matlab求預測一組數據的bp神經網路模型,可以分
1、給定已經數據,作為一個原始序列;
2、設定自回歸階數,一般2~3,太高不一定好;
3、設定預測某一時間段
4、設定預測步數
5、用BP自定義函數進行預測
6、根據預測值,用plot函數繪制預測數據走勢圖
其主要實現代碼如下:
clc
% x為原始序列(行向量)
x=[208.72 205.69 231.5 242.78 235.64 218.41];
%x=[101.4 101.4 101.9 102.4 101.9 102.9];
%x=[140 137 112 125 213 437.43];
t=1:length(x);
% 自回歸階數
lag=3;
%預測某一時間段
t1=t(end)+1:t(end)+5;
%預測步數為fn
fn=length(t1);
[f_out,iinput]=BP(x,lag,fn);
P=vpa(f_out,5);
A=[t1' P'];
disp('預測值')
disp(A)
% 畫出預測圖
figure(1),plot(t,iinput,'bo-'),hold on
plot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid on
title('BP神經網路預測某地鐵線路客流量')
xlabel('月號'),ylabel('客流量(百萬)');
運行結果:
『陸』 如何用python和scikit learn實現神經網路
1:神經網路演算法簡介
2:Backpropagation演算法詳細介紹
3:非線性轉化方程舉例
4:自己實現神經網路演算法NeuralNetwork
5:基於NeuralNetwork的XOR實例
6:基於NeuralNetwork的手寫數字識別實例
7:scikit-learn中BernoulliRBM使用實例
8:scikit-learn中的手寫數字識別實例
一:神經網路演算法簡介
1:背景
以人腦神經網路為啟發,歷史上出現過很多版本,但最著名的是backpropagation
2:多層向前神經網路(Multilayer Feed-Forward Neural Network)