導航:首頁 > 編程大全 > 人工神經網路分析模型應用績效

人工神經網路分析模型應用績效

發布時間:2023-02-18 06:31:08

❶ 人工神經網路有什麼應用條件

人工神經網路(Artificial Neural Network,簡稱ANN ),以數學模型模擬神經元活動,是基於模仿大腦神經網路結構和功能而建立的一種信息處理系統。人工神經網路具有自學習、自組織、自適應以及很強的非線性函數逼近能力,擁有強大的容錯性。它可以實現模擬、預測以及模糊控制等功能。是處理非線性系統的有力工具
它是物流合作夥伴選擇方法中合作夥伴選擇的神經網路演算法的另一種名稱。它是20世界80年代後迅速發展的一門新興學科,ANN可以模擬人腦的某些智能行為,如知覺,靈感和形象思維等,具有自學性,自適應和非線性動態處理等特徵。
將ANN應用於供應鏈管理(SCM)環境下合作合辦的綜合評價選擇,意在建立更加接近於人類思維模式的定性與定量相結合的綜合評價選擇模型。通過對給定樣本模式的學習,獲取評價專家的知識,經驗,主管判斷及對目標重要性的傾向,當對合作夥伴作出綜合評價時,該方法可再現評價專家的經驗,知識和直覺思維,從而實現了定性分析與定量分析的有效結合,也可以較好的保證合作夥伴綜合評價結果的客觀性。
在選定評價指標組合的基礎上,對評價指標作出評價,得到評價值後,因各指標間沒有統一的度量標准,難以進行直接的分析和比較,也不利於輸入神經網路計算。因此,在用神經網路進行綜合評價之前,應首先將輸入的評價值通過隸屬函數的作用轉換為(0,1]之間的值,即對評價值進行標准無綱量化,並作為神經網路的輸入,以使ANN可以處理定量和定性指標。

❷ 人工神經網路評價法

人工神經元是人工神經網路的基本處理單元,而人工智慧的一個重要組成部分又是人工神經網路。人工神經網路是模擬生物神經元系統的數學模型,接受信息主要是通過神經元來進行的。首先,人工神經元利用連接強度將產生的信號擴大;然後,接收到所有與之相連的神經元輸出的加權累積;最後,將神經元與加權總和一一比較,當比閾值大時,則激活人工神經元,信號被輸送至與它連接的上一層的神經元,反之則不行。

人工神經網路的一個重要模型就是反向傳播模型(Back-Propagation Model)(簡稱BP模型)。對於一個擁有n個輸入節點、m個輸出節點的反向傳播網路,可將輸入到輸出的關系看作n維空間到m維空間的映射。由於網路中含有大量非線性節點,所以可具有高度非線性。

(一)神經網路評價法的步驟

利用神經網路對復墾潛力進行評價的目的就是對某個指標的輸入產生一個預期的評價結果,在此過程中需要對網路的連接弧權值進行不斷的調整。

(1)初始化所有連接弧的權值。為了保證網路不會出現飽和及反常的情況,一般將其設置為較小的隨機數。

(2)在網路中輸入一組訓練數據,並對網路的輸出值進行計算。

(3)對期望值與輸出值之間的偏差進行計算,再從輸出層逆向計算到第一隱含層,調整各條弧的權值,使其往減少該偏差的方向發展。

(4)重復以上幾個步驟,對訓練集中的各組訓練數據反復計算,直至二者的偏差達到能夠被認可的程度為止。

(二)人工神經網路模型的建立

(1)確定輸入層個數。根據評價對象的實際情況,輸入層的個數就是所選擇的評價指標數。

(2)確定隱含層數。通常最為理想的神經網路只具有一個隱含層,輸入的信號能夠被隱含節點分離,然後組合成新的向量,其運算快速,可讓復雜的事物簡單化,減少不必要的麻煩。

(3)確定隱含層節點數。按照經驗公式:

災害損毀土地復墾

式中:j——隱含層的個數;

n——輸入層的個數;

m——輸出層的個數。

人工神經網路模型結構如圖5-2。

圖5-2人工神經網路結構圖(據周麗暉,2004)

(三)人工神經網路的計算

輸入被評價對象的指標信息(X1,X2,X3,…,Xn),計算實際輸出值Yj

災害損毀土地復墾

比較已知輸出與計算輸出,修改K層節點的權值和閾值。

災害損毀土地復墾

式中:wij——K-1層結點j的連接權值和閾值;

η——系數(0<η<1);

Xi——結點i的輸出。

輸出結果:

Cj=yj(1-yj)(dj-yj) (5-21)

式中:yj——結點j的實際輸出值;

dj——結點j的期望輸出值。因為無法對隱含結點的輸出進行比較,可推算出:

災害損毀土地復墾

式中:Xj——結點j的實際輸出值。

它是一個輪番代替的過程,每次的迭代都將W值調整,這樣經過反復更替,直到計算輸出值與期望輸出值的偏差在允許值范圍內才能停止。

利用人工神經網路法對復墾潛力進行評價,實際上就是將土地復墾影響評價因子與復墾潛力之間的映射關系建立起來。只要選擇的網路結構合適,利用人工神經網路函數的逼近性,就能無限接近上述映射關系,所以採用人工神經網路法進行災毀土地復墾潛力評價是適宜的。

(四)人工神經網路方法的優缺點

人工神經網路方法與其他方法相比具有如下優點:

(1)它是利用最優訓練原則進行重復計算,不停地調試神經網路結構,直至得到一個相對穩定的結果。所以,採取此方法進行復墾潛力評價可以消除很多人為主觀因素,保證了復墾潛力評價結果的真實性和客觀性。

(2)得到的評價結果誤差相對較小,通過反復迭代減少系統誤差,可滿足任何精度要求。

(3)動態性好,通過增加參比樣本的數量和隨著時間不斷推移,能夠實現動態追蹤比較和更深層次的學習。

(4)它以非線性函數為基礎,與復雜的非線性動態經濟系統更貼近,能夠更加真實、更為准確地反映出災毀土地復墾潛力,比傳統評價方法更適用。

但是人工神經網路也存在一定的不足:

(1)人工神經網路演算法是採取最優化演算法,通過迭代計算對連接各神經元之間的權值不斷地調整,直到達到全局最優化。但誤差曲面相當復雜,在計算過程中一不小心就會使神經網路陷入局部最小點。

(2)誤差通過輸出層逆向傳播,隱含層越多,逆向傳播偏差在接近輸入層時就越不準確,評價效率在一定程度上也受到影響,收斂速度不及時的情況就容易出現,從而造成個別區域的復墾潛力評價結果出現偏離。

❸ AlphaGo的神奇全靠它,詳解人工神經網路!

❹ 人工神經網路的應用分析

經過幾十年的發展,神經網路理論在模式識別、自動控制、信號處理、輔助決策、人工智慧等眾多研究領域取得了廣泛的成功。下面介紹神經網路在一些領域中的應用現狀。 在處理許多問題中,信息來源既不完整,又包含假象,決策規則有時相互矛盾,有時無章可循,這給傳統的信息處理方式帶來了很大的困難,而神經網路卻能很好的處理這些問題,並給出合理的識別與判斷。
1.信息處理
現代信息處理要解決的問題是很復雜的,人工神經網路具有模仿或代替與人的思維有關的功能, 可以實現自動診斷、問題求解,解決傳統方法所不能或難以解決的問題。人工神經網路系統具有很高的容錯性、魯棒性及自組織性,即使連接線遭到很高程度的破壞, 它仍能處在優化工作狀態,這點在軍事系統電子設備中得到廣泛的應用。現有的智能信息系統有智能儀器、自動跟蹤監測儀器系統、自動控制制導系統、自動故障診斷和報警系統等。
2. 模式識別
模式識別是對表徵事物或現象的各種形式的信息進行處理和分析,來對事物或現象進行描述、辨認、分類和解釋的過程。該技術以貝葉斯概率論和申農的資訊理論為理論基礎,對信息的處理過程更接近人類大腦的邏輯思維過程。現在有兩種基本的模式識別方法,即統計模式識別方法和結構模式識別方法。人工神經網路是模式識別中的常用方法,近年來發展起來的人工神經網路模式的識別方法逐漸取代傳統的模式識別方法。經過多年的研究和發展,模式識別已成為當前比較先進的技術,被廣泛應用到文字識別、語音識別、指紋識別、遙感圖像識別、人臉識別、手寫體字元的識別、工業故障檢測、精確制導等方面。 由於人體和疾病的復雜性、不可預測性,在生物信號與信息的表現形式上、變化規律(自身變化與醫學干預後變化)上,對其進行檢測與信號表達,獲取的數據及信息的分析、決策等諸多方面都存在非常復雜的非線性聯系,適合人工神經網路的應用。目前的研究幾乎涉及從基礎醫學到臨床醫學的各個方面,主要應用在生物信號的檢測與自動分析,醫學專家系統等。
1. 生物信號的檢測與分析
大部分醫學檢測設備都是以連續波形的方式輸出數據的,這些波形是診斷的依據。人工神經網路是由大量的簡單處理單元連接而成的自適應動力學系統, 具有巨量並行性,分布式存貯,自適應學習的自組織等功能,可以用它來解決生物醫學信號分析處理中常規法難以解決或無法解決的問題。神經網路在生物醫學信號檢測與處理中的應用主要集中在對腦電信號的分析,聽覺誘發電位信號的提取、肌電和胃腸電等信號的識別,心電信號的壓縮,醫學圖像的識別和處理等。
2. 醫學專家系統
傳統的專家系統,是把專家的經驗和知識以規則的形式存儲在計算機中,建立知識庫,用邏輯推理的方式進行醫療診斷。但是在實際應用中,隨著資料庫規模的增大,將導致知識「爆炸」,在知識獲取途徑中也存在「瓶頸」問題,致使工作效率很低。以非線性並行處理為基礎的神經網路為專家系統的研究指明了新的發展方向, 解決了專家系統的以上問題,並提高了知識的推理、自組織、自學習能力,從而神經網路在醫學專家系統中得到廣泛的應用和發展。在麻醉與危重醫學等相關領域的研究中,涉及到多生理變數的分析與預測,在臨床數據中存在著一些尚未發現或無確切證據的關系與現象,信號的處理,干擾信號的自動區分檢測,各種臨床狀況的預測等,都可以應用到人工神經網路技術。 1. 市場價格預測
對商品價格變動的分析,可歸結為對影響市場供求關系的諸多因素的綜合分析。傳統的統計經濟學方法因其固有的局限性,難以對價格變動做出科學的預測,而人工神經網路容易處理不完整的、模糊不確定或規律性不明顯的數據,所以用人工神經網路進行價格預測是有著傳統方法無法相比的優勢。從市場價格的確定機制出發,依據影響商品價格的家庭戶數、人均可支配收入、貸款利率、城市化水平等復雜、多變的因素,建立較為准確可靠的模型。該模型可以對商品價格的變動趨勢進行科學預測,並得到准確客觀的評價結果。
2. 風險評估
風險是指在從事某項特定活動的過程中,因其存在的不確定性而產生的經濟或財務的損失、自然破壞或損傷的可能性。防範風險的最佳辦法就是事先對風險做出科學的預測和評估。應用人工神經網路的預測思想是根據具體現實的風險來源, 構造出適合實際情況的信用風險模型的結構和演算法,得到風險評價系數,然後確定實際問題的解決方案。利用該模型進行實證分析能夠彌補主觀評估的不足,可以取得滿意效果。 從神經網路模型的形成開始,它就與心理學就有著密不可分的聯系。神經網路抽象於神經元的信息處理功能,神經網路的訓練則反映了感覺、記憶、學習等認知過程。人們通過不斷地研究, 變化著人工神經網路的結構模型和學習規則,從不同角度探討著神經網路的認知功能,為其在心理學的研究中奠定了堅實的基礎。近年來,人工神經網路模型已經成為探討社會認知、記憶、學習等高級心理過程機制的不可或缺的工具。人工神經網路模型還可以對腦損傷病人的認知缺陷進行研究,對傳統的認知定位機制提出了挑戰。
雖然人工神經網路已經取得了一定的進步,但是還存在許多缺陷,例如:應用的面不夠寬闊、結果不夠精確;現有模型演算法的訓練速度不夠高;演算法的集成度不夠高;同時我們希望在理論上尋找新的突破點, 建立新的通用模型和演算法。需進一步對生物神經元系統進行研究,不斷豐富人們對人腦神經的認識。

❺ 人工神經網路綜述

文章主要分為:
一、人工神經網路的概念;
二、人工神經網路的發展歷史;
三、人工神經網路的特點;
四、人工神經網路的結構。
。。

人工神經網路(Artificial Neural Network,ANN)簡稱神經網路(NN),是基於生物學中神經網路的基本原理,在理解和抽象了人腦結構和外界刺激響應機制後,以網路拓撲知識為理論基礎,模擬人腦的神經系統對復雜信息的處理機制的一種數學模型。該模型以並行分布的處理能力、高容錯性、智能化和自學習等能力為特徵,將信息的加工和存儲結合在一起,以其獨特的知識表示方式和智能化的自適應學習能力,引起各學科領域的關注。它實際上是一個有大量簡單元件相互連接而成的復雜網路,具有高度的非線性,能夠進行復雜的邏輯操作和非線性關系實現的系統。

神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激活函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重(weight),神經網路就是通過這種方式來模擬人類的記憶。網路的輸出則取決於網路的結構、網路的連接方式、權重和激活函數。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。神經網路的構築理念是受到生物的神經網路運作啟發而產生的。人工神經網路則是把對生物神經網路的認識與數學統計模型相結合,藉助數學統計工具來實現。另一方面在人工智慧學的人工感知領域,我們通過數學統計學的方法,使神經網路能夠具備類似於人的決定能力和簡單的判斷能力,這種方法是對傳統邏輯學演算的進一步延伸。

人工神經網路中,神經元處理單元可表示不同的對象,例如特徵、字母、概念,或者一些有意義的抽象模式。網路中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統外部觀察的單元。神經元間的連接權值反映了單元間的連接強度,信息的表示和處理體現在網路處理單元的連接關系中。人工神經網路是一種非程序化、適應性、大腦風格的信息處理,其本質是通過網路的變換和動力學行為得到一種並行分布式的信息處理功能,並在不同程度和層次上模仿人腦神經系統的信息處理功能。

神經網路,是一種應用類似於大腦神經突觸連接結構進行信息處理的數學模型,它是在人類對自身大腦組織結合和思維機制的認識理解基礎之上模擬出來的,它是根植於神經科學、數學、思維科學、人工智慧、統計學、物理學、計算機科學以及工程科學的一門技術。

在介紹神經網路的發展歷史之前,首先介紹一下神經網路的概念。神經網路主要是指一種仿造人腦設計的簡化的計算模型,這種模型中包含了大量的用於計算的神經元,這些神經元之間會通過一些帶有權重的連邊以一種層次化的方式組織在一起。每一層的神經元之間可以進行大規模的並行計算,層與層之間進行消息的傳遞。

下圖展示了整個神經網路的發展歷程:

神經網路的發展有悠久的歷史。其發展過程大致可以概括為如下4個階段。

(1)、M-P神經網路模型:20世紀40年代,人們就開始了對神經網路的研究。1943 年,美國心理學家麥克洛奇(Mcculloch)和數學家皮茲(Pitts)提出了M-P模型,此模型比較簡單,但是意義重大。在模型中,通過把神經元看作個功能邏輯器件來實現演算法,從此開創了神經網路模型的理論研究。
(2)、Hebb規則:1949 年,心理學家赫布(Hebb)出版了《The Organization of Behavior》(行為組織學),他在書中提出了突觸連接強度可變的假設。這個假設認為學習過程最終發生在神經元之間的突觸部位,突觸的連接強度隨之突觸前後神經元的活動而變化。這一假設發展成為後來神經網路中非常著名的Hebb規則。這一法則告訴人們,神經元之間突觸的聯系強度是可變的,這種可變性是學習和記憶的基礎。Hebb法則為構造有學習功能的神經網路模型奠定了基礎。
(3)、感知器模型:1957 年,羅森勃拉特(Rosenblatt)以M-P 模型為基礎,提出了感知器(Perceptron)模型。感知器模型具有現代神經網路的基本原則,並且它的結構非常符合神經生理學。這是一個具有連續可調權值矢量的MP神經網路模型,經過訓練可以達到對一定的輸入矢量模式進行分類和識別的目的,它雖然比較簡單,卻是第一個真正意義上的神經網路。Rosenblatt 證明了兩層感知器能夠對輸入進行分類,他還提出了帶隱層處理元件的三層感知器這一重要的研究方向。Rosenblatt 的神經網路模型包含了一些現代神經計算機的基本原理,從而形成神經網路方法和技術的重大突破。
(4)、ADALINE網路模型: 1959年,美國著名工程師威德羅(B.Widrow)和霍夫(M.Hoff)等人提出了自適應線性元件(Adaptive linear element,簡稱Adaline)和Widrow-Hoff學習規則(又稱最小均方差演算法或稱δ規則)的神經網路訓練方法,並將其應用於實際工程,成為第一個用於解決實際問題的人工神經網路,促進了神經網路的研究應用和發展。ADALINE網路模型是一種連續取值的自適應線性神經元網路模型,可以用於自適應系統。

人工智慧的創始人之一Minsky和Papert對以感知器為代表的網路系統的功能及局限性從數學上做了深入研究,於1969年發表了轟動一時《Perceptrons》一書,指出簡單的線性感知器的功能是有限的,它無法解決線性不可分的兩類樣本的分類問題,如簡單的線性感知器不可能實現「異或」的邏輯關系等。這一論斷給當時人工神經元網路的研究帶來沉重的打擊。開始了神經網路發展史上長達10年的低潮期。
(1)、自組織神經網路SOM模型:1972年,芬蘭的KohonenT.教授,提出了自組織神經網路SOM(Self-Organizing feature map)。後來的神經網路主要是根據KohonenT.的工作來實現的。SOM網路是一類無導師學習網路,主要用於模式識別﹑語音識別及分類問題。它採用一種「勝者為王」的競爭學習演算法,與先前提出的感知器有很大的不同,同時它的學習訓練方式是無指導訓練,是一種自組織網路。這種學習訓練方式往往是在不知道有哪些分類類型存在時,用作提取分類信息的一種訓練。
(2)、自適應共振理論ART:1976年,美國Grossberg教授提出了著名的自適應共振理論ART(Adaptive Resonance Theory),其學習過程具有自組織和自穩定的特徵。

(1)、Hopfield模型:1982年,美國物理學家霍普菲爾德(Hopfield)提出了一種離散神經網路,即離散Hopfield網路,從而有力地推動了神經網路的研究。在網路中,它首次將李雅普諾夫(Lyapunov)函數引入其中,後來的研究學者也將Lyapunov函數稱為能量函數。證明了網路的穩定性。1984年,Hopfield 又提出了一種連續神經網路,將網路中神經元的激活函數由離散型改為連續型。1985 年,Hopfield和Tank利用Hopfield神經網路解決了著名的旅行推銷商問題(Travelling Salesman Problem)。Hopfield神經網路是一組非線性微分方程。Hopfield的模型不僅對人工神經網路信息存儲和提取功能進行了非線性數學概括,提出了動力方程和學習方程,還對網路演算法提供了重要公式和參數,使人工神經網路的構造和學習有了理論指導,在Hopfield模型的影響下,大量學者又激發起研究神經網路的熱情,積極投身於這一學術領域中。因為Hopfield 神經網路在眾多方面具有巨大潛力,所以人們對神經網路的研究十分地重視,更多的人開始了研究神經網路,極大地推動了神經網路的發展。
(2)、Boltzmann機模型:1983年,Kirkpatrick等人認識到模擬退火演算法可用於NP完全組合優化問題的求解,這種模擬高溫物體退火過程來找尋全局最優解的方法最早由Metropli等人1953年提出的。1984年,Hinton與年輕學者Sejnowski等合作提出了大規模並行網路學習機,並明確提出隱單元的概念,這種學習機後來被稱為Boltzmann機。
Hinton和Sejnowsky利用統計物理學的感念和方法,首次提出的多層網路的學習演算法,稱為Boltzmann 機模型。
(3)、BP神經網路模型:1986年,儒默哈特(D.E.Ru melhart)等人在多層神經網路模型的基礎上,提出了多層神經網路權值修正的反向傳播學習演算法----BP演算法(Error Back-Propagation),解決了多層前向神經網路的學習問題,證明了多層神經網路具有很強的學習能力,它可以完成許多學習任務,解決許多實際問題。
(4)、並行分布處理理論:1986年,由Rumelhart和McCkekkand主編的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,該書中,他們建立了並行分布處理理論,主要致力於認知的微觀研究,同時對具有非線性連續轉移函數的多層前饋網路的誤差反向傳播演算法即BP演算法進行了詳盡的分析,解決了長期以來沒有權值調整有效演算法的難題。可以求解感知機所不能解決的問題,回答了《Perceptrons》一書中關於神經網路局限性的問題,從實踐上證實了人工神經網路有很強的運算能力。
(5)、細胞神經網路模型:1988年,Chua和Yang提出了細胞神經網路(CNN)模型,它是一個細胞自動機特性的大規模非線性計算機模擬系統。Kosko建立了雙向聯想存儲模型(BAM),它具有非監督學習能力。
(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初產生了很大的影響,他建立了一種神經網路系統理論。
(7)、1988年,Linsker對感知機網路提出了新的自組織理論,並在Shanon資訊理論的基礎上形成了最大互信息理論,從而點燃了基於NN的信息應用理論的光芒。
(8)、1988年,Broomhead和Lowe用徑向基函數(Radialbasis function, RBF)提出分層網路的設計方法,從而將NN的設計與數值分析和線性適應濾波相掛鉤。
(9)、1991年,Haken把協同引入神經網路,在他的理論框架中,他認為,認知過程是自發的,並斷言模式識別過程即是模式形成過程。
(10)、1994年,廖曉昕關於細胞神經網路的數學理論與基礎的提出,帶來了這個領域新的進展。通過拓廣神經網路的激活函數類,給出了更一般的時滯細胞神經網路(DCNN)、Hopfield神經網路(HNN)、雙向聯想記憶網路(BAM)模型。
(11)、90年代初,Vapnik等提出了支持向量機(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)維數的概念。
經過多年的發展,已有上百種的神經網路模型被提出。

深度學習(Deep Learning,DL)由Hinton等人於2006年提出,是機器學習的一個新領域。深度學習本質上是構建含有多隱層的機器學習架構模型,通過大規模數據進行訓練,得到大量更具代表性的特徵信息。深度學習演算法打破了傳統神經網路對層數的限制,可根據設計者需要選擇網路層數。

突觸是神經元之間相互連接的介面部分,即一個神經元的神經末梢與另一個神經元的樹突相接觸的交界面,位於神經元的神經末梢尾端。突觸是軸突的終端。
大腦可視作為1000多億神經元組成的神經網路。神經元的信息傳遞和處理是一種電化學活動.樹突由於電化學作用接受外界的刺激,通過胞體內的活動體現為軸突電位,當軸突電位達到一定的值則形成神經脈沖或動作電位;再通過軸突末梢傳遞給其它的神經元.從控制論的觀點來看;這一過程可以看作一個多輸入單輸出非線性系統的動態過程。
神經元的功能特性:(1)時空整合功能;(2)神經元的動態極化性;(3)興奮與抑制狀態;(4)結構的可塑性;(5)脈沖與電位信號的轉換;(6)突觸延期和不應期;(7)學習、遺忘和疲勞。

神經網路從兩個方面模擬大腦:
(1)、神經網路獲取的知識是從外界環境中學習得來的。
(2)、內部神經元的連接強度,即突觸權值,用於儲存獲取的知識。
神經網路系統由能夠處理人類大腦不同部分之間信息傳遞的由大量神經元連接形成的拓撲結構組成,依賴於這些龐大的神經元數目和它們之間的聯系,人類的大腦能夠收到輸入的信息的刺激由分布式並行處理的神經元相互連接進行非線性映射處理,從而實現復雜的信息處理和推理任務。
對於某個處理單元(神經元)來說,假設來自其他處理單元(神經元)i的信息為Xi,它們與本處理單元的互相作用強度即連接權值為Wi, i=0,1,…,n-1,處理單元的內部閾值為θ。那麼本處理單元(神經元)的輸入為:

,而處理單元的輸出為:

式中,xi為第i個元素的輸入,wi為第i個處理單元與本處理單元的互聯權重即神經元連接權值。f稱為激活函數或作用函數,它決定節點(神經元)的輸出。θ表示隱含層神經節點的閾值。

神經網路的主要工作是建立模型和確定權值,一般有前向型和反饋型兩種網路結構。通常神經網路的學習和訓練需要一組輸入數據和輸出數據對,選擇網路模型和傳遞、訓練函數後,神經網路計算得到輸出結果,根據實際輸出和期望輸出之間的誤差進行權值的修正,在網路進行判斷的時候就只有輸入數據而沒有預期的輸出結果。神經網路一個相當重要的能力是其網路能通過它的神經元權值和閾值的不斷調整從環境中進行學習,直到網路的輸出誤差達到預期的結果,就認為網路訓練結束。

對於這樣一種多輸入、單輸出的基本單元可以進一步從生物化學、電生物學、數學等方面給出描述其功能的模型。利用大量神經元相互連接組成的人工神經網路,將顯示出人腦的若干特徵,人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重wij值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以至超過設計者原有的知識水平。通常,它的學習(或訓練)方式可分為兩種,一種是有監督(supervised)或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督(unsupervised)學習或稱無導師學習,這時,只規定學習方式或某些規則,而具體的學習內容隨系統所處環境(即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似於人腦的功能。
在人工神經網路設計及應用研究中,通常需要考慮三個方面的內容,即神經元激活函數、神經元之間的連接形式和網路的學習(訓練)。

❻ 人工神經網路(ANN)簡述

我們從下面四點認識人工神經網路(ANN: Artificial Neutral Network):神經元結構、神經元的激活函數、神經網路拓撲結構、神經網路選擇權值和學習演算法。

1. 神經元:
我們先來看一組對比圖就能了解是怎樣從生物神經元建模為人工神經元。

下面分別講述:
生物神經元的組成包括細胞體、樹突、軸突、突觸。樹突可以看作輸入端,接收從其他細胞傳遞過來的電信號;軸突可以看作輸出端,傳遞電荷給其他細胞;突觸可以看作I/O介面,連接神經元,單個神經元可以和上千個神經元連接。細胞體內有膜電位,從外界傳遞過來的電流使膜電位發生變化,並且不斷累加,當膜電位升高到超過一個閾值時,神經元被激活,產生一個脈沖,傳遞到下一個神經元。

為了更形象理解神經元傳遞信號過程,把一個神經元比作一個水桶。水桶下側連著多根水管(樹突),水管既可以把桶里的水排出去(抑制性),又可以將其他水桶的水輸進來(興奮性),水管的粗細不同,對桶中水的影響程度不同(權重),水管對水桶水位(膜電位)的改變就是水桶內水位的改變,當桶中水達到一定高度時,就能通過另一條管道(軸突)排出去。

按照這個原理,科學家提出了M-P模型(取自兩個提出者的姓名首字母),M-P模型是對生物神經元的建模,作為人工神經網路中的一個神經元。

由MP模型的示意圖,我們可以看到與生物神經元的相似之處,x_i表示多個輸入,W_ij表示每個輸入的權值,其正負模擬了生物神經元中突出的興奮和抑制;sigma表示將全部輸入信號進行累加整合,f為激活函數,O為輸出。下圖可以看到生物神經元和MP模型的類比:

往後誕生的各種神經元模型都是由MP模型演變過來。

2. 激活函數
激活函數可以看作濾波器,接收外界各種各樣的信號,通過調整函數,輸出期望值。ANN通常採用三類激活函數:閾值函數、分段函數、雙極性連續函數(sigmoid,tanh):

3. 學習演算法
神經網路的學習也稱為訓練,通過神經網路所在環境的刺激作用調整神經網路的自由參數(如連接權值),使神經網路以一種新的方式對外部環境做出反應的一個過程。每個神經網路都有一個激活函數y=f(x),訓練過程就是通過給定的海量x數據和y數據,擬合出激活函數f。學習過程分為有導師學習和無導師學習,有導師學習是給定期望輸出,通過對權值的調整使實際輸出逼近期望輸出;無導師學習給定表示方法質量的測量尺度,根據該尺度來優化參數。常見的有Hebb學習、糾錯學習、基於記憶學習、隨機學習、競爭學習。

4. 神經網路拓撲結構
常見的拓撲結構有單層前向網路、多層前向網路、反饋網路,隨機神經網路、競爭神經網路。

5. 神經網路的發展

(不能貼公式不好解釋啊 -_-!)sigma是誤差信號,yita是學習率,net是輸入之和,V是輸入層到隱含層的權重矩陣,W是隱含層到輸出層的權重矩陣。

之後還有幾種

隨著計算機硬體計算能力越來越強,用來訓練的數據越來越多,神經網路變得越來越復雜。在人工智慧領域常聽到DNN(深度神經網路)、CNN(卷積神經網路)、RNN(遞歸神經網路)。其中,DNN是總稱,指層數非常多的網路,通常有二十幾層,具體可以是CNN或RNN等網路結構。

參考資料

❼ BP人工神經網路

人工神經網路(artificialneuralnetwork,ANN)指由大量與自然神經系統相類似的神經元聯結而成的網路,是用工程技術手段模擬生物網路結構特徵和功能特徵的一類人工系統。神經網路不但具有處理數值數據的一般計算能力,而且還具有處理知識的思維、學習、記憶能力,它採用類似於「黑箱」的方法,通過學習和記憶,找出輸入、輸出變數之間的非線性關系(映射),在執行問題和求解時,將所獲取的數據輸入到已經訓練好的網路,依據網路學到的知識進行網路推理,得出合理的答案與結果。

岩土工程中的許多問題是非線性問題,變數之間的關系十分復雜,很難用確切的數學、力學模型來描述。工程現場實測數據的代表性與測點的位置、范圍和手段有關,有時很難滿足傳統統計方法所要求的統計條件和規律,加之岩土工程信息的復雜性和不確定性,因而運用神經網路方法實現岩土工程問題的求解是合適的。

BP神經網路模型是誤差反向傳播(BackPagation)網路模型的簡稱。它由輸入層、隱含層和輸出層組成。網路的學習過程就是對網路各層節點間連接權逐步修改的過程,這一過程由兩部分組成:正向傳播和反向傳播。正向傳播是輸入模式從輸入層經隱含層處理傳向輸出層;反向傳播是均方誤差信息從輸出層向輸入層傳播,將誤差信號沿原來的連接通路返回,通過修改各層神經元的權值,使得誤差信號最小。

BP神經網路模型在建立及應用過程中,主要存在的不足和建議有以下四個方面:

(1)對於神經網路,數據愈多,網路的訓練效果愈佳,也更能反映實際。但在實際操作中,由於條件的限制很難選取大量的樣本值進行訓練,樣本數量偏少。

(2)BP網路模型其計算速度較慢、無法表達預測量與其相關參數之間親疏關系。

(3)以定量數據為基礎建立模型,若能收集到充分資料,以定性指標(如基坑降水方式、基坑支護模式、施工工況等)和一些易獲取的定量指標作為輸入層,以評價等級作為輸出層,這樣建立的BP網路模型將更准確全面。

(4)BP人工神經網路系統具有非線性、智能的特點。較好地考慮了定性描述和定量計算、精確邏輯分析和非確定性推理等方面,但由於樣本不同,影響要素的權重不同,以及在根據先驗知識和前人的經驗總結對定性參數進行量化處理,必然會影響評價的客觀性和准確性。因此,在實際評價中只有根據不同的基坑施工工況、不同的周邊環境條件,應不同用戶的需求,選擇不同的分析指標,才能滿足復雜工況條件下地質環境評價的要求,取得較好的應用效果。

❽ 人工神經網路有什麼特點不同模型有什麼作用

人工神經網路是一種仿照人腦神經網路的模型,用於解決各種復雜的問題。它通常由輸入層、隱藏層和輸出層組成,並且可以通過訓練來學習和改善解決問題的能力。
不同的人工神經網路模型可以用於解決不同類型的問題。例如,卷積神經網路可以用於圖像識別,而循環神經網路可以用於語音識別和時間序列預測。

閱讀全文

與人工神經網路分析模型應用績效相關的資料

熱點內容
4kb的txt文件差不多多少字 瀏覽:984
u盤文件突然變成exe 瀏覽:164
現在哪些學校初中有學編程的 瀏覽:402
word查找全選 瀏覽:599
開工報告附什麼文件資料 瀏覽:150
分區工具app怎麼用 瀏覽:212
安卓堅果雲文件路徑 瀏覽:591
sqllog文件 瀏覽:236
如何在電腦中找到文件路徑 瀏覽:830
數據結構訪問和查找有什麼區別 瀏覽:401
怎麼清空icloud內的數據 瀏覽:338
微信鎖屏後音樂停止 瀏覽:668
applepay蘋果手機卡 瀏覽:835
一個14mb的文件能儲存多少萬漢字 瀏覽:478
騰訊文檔里如何導出數據 瀏覽:979
java面試題csdn 瀏覽:410
rpgnvp是什麼文件 瀏覽:594
如何將一列數據復制到excel 瀏覽:488
sd卡怎麼恢復excel文件 瀏覽:282
gdblinux內核多核調試 瀏覽:24

友情鏈接