導航:首頁 > 編程大全 > 數學建模神經網路

數學建模神經網路

發布時間:2023-01-08 04:59:13

1. 在做數學建模題時,都有那些方法可以處理大量數據

你好,可以利用spss來處理大量數據,這是相當給力的軟體,方法有因子分析、主成分分析法等等,還有相關的檢驗,如果有需要的話可以把我以前參加數模整理的東西發你,謝謝!或許對你有幫助

2. 數學建模裡面關於BP神經網路模型的問題 在通過訓練得到隱層網路結構後怎麼將權值和閾值標記在圖中...

下半張圖的每一個「NEURON」都依次代表上半張圖中的一個點,第一個「NEURON」代表專第一列第屬一個點,第二個「NEURON」代表第一列第二個點,第三個「NEURON」代表第一列第三個店,第四個「NEURON」代表第二列第一個點,以此類推。
bias代表該點的閾值,wight代表從該點出發的直線的權值,例如:第五個「NEURON」代表第二列第二個點,其bias=-3.5455131273就代表該點的閾值為-3.5455131273。其第一個weight=10.0841641579,代表從該點出發的第一條直線(既從該點到第一列第一個點的直線)權值為10.0841641579。該點第二個wight=2.93571418369,代表從該點出發的第二條直線(既該點到第一列第二個點的直線)權值為2.93571418369。依次類推。第一列的所有點都沒有閾值。

3. 數學建模演算法有哪些

1. 蒙特卡羅演算法。 該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬來檢驗自己模型的正確性,幾乎是比賽時必用的方法。
2. 數據擬合、參數估計、插值等數據處理演算法。 比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用MATLAB 作為工具
3. 線性規劃、整數規劃、多元規劃、二次規劃等規劃類演算法。 建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、Lingo 軟體求解。
4. 圖論演算法。 這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備。
5. 動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法。 這些演算法是演算法設計中比較常用的方法,競賽中很多場合會用到。
6. 最優化理論的三大非經典演算法:模擬退火演算法、神經網路演算法、遺傳演算法。 這些問題是用來解決一些較困難的最優化問題的,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用。
7. 網格演算法和窮舉法。 兩者都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具。
8. 一些連續數據離散化方法。 很多問題都是實際來的,數據可以是連續的,而計算機只能處理離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的。
9. 數值分析演算法。 如果在比賽中採用高級語言進行編程的話,那些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用。
10. 圖象處理演算法。 賽題中有一類問題與圖形有關,即使問題與圖形無關,論文中也會需要圖片來說明問題,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用MATLAB 進行處理。
以下將結合歷年的競賽題,對這十類演算法進行詳細地說明。
以下將結合歷年的競賽題,對這十類演算法進行詳細地說明。
2 十類演算法的詳細說明
2.1 蒙特卡羅演算法
大多數建模賽題中都離不開計算機模擬,隨機性模擬是非常常見的演算法之一。
舉個例子就是97 年的A 題,每個零件都有自己的標定值,也都有自己的容差等級,而求解最優的組合方案將要面對著的是一個極其復雜的公式和108 種容差選取方案,根本不可能去求解析解,那如何去找到最優的方案呢?隨機性模擬搜索最優方案就是其中的一種方法,在每個零件可行的區間中按照正態分布隨機的選取一個標定值和選取一個容差值作為一種方案,然後通過蒙特卡羅演算法模擬出大量的方案,從中選取一個最佳的。另一個例子就是去年的彩票第二問,要求設計一種更好的方案,首先方案的優劣取決於很多復雜的因素,同樣不可能刻畫出一個模型進行求解,只能靠隨機模擬模擬。
2.2 數據擬合、參數估計、插值等演算法
數據擬合在很多賽題中有應用,與圖形處理有關的問題很多與擬合有關系,一個例子就是98 年美國賽A 題,生物組織切片的三維插值處理,94 年A 題逢山開路,山體海拔高度的插值計算,還有吵的沸沸揚揚可能會考的「非典」問題也要用到數據擬合演算法,觀察數據的走向進行處理。此類問題在MATLAB中有很多現成的函數可以調用,熟悉MATLAB,這些方法都能游刃有餘的用好。
2.3 規劃類問題演算法
競賽中很多問題都和數學規劃有關,可以說不少的模型都可以歸結為一組不等式作為約束條件、幾個函數表達式作為目標函數的問題,遇到這類問題,求解就是關鍵了,比如98年B 題,用很多不等式完全可以把問題刻畫清楚,因此列舉出規劃後用Lindo、Lingo 等軟體來進行解決比較方便,所以還需要熟悉這兩個軟體。
2.4 圖論問題
98 年B 題、00 年B 題、95 年鎖具裝箱等問題體現了圖論問題的重要性,這類問題演算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等問題。每一個演算法都應該實現一遍,否則到比賽時再寫就晚了。
2.5 計算機演算法設計中的問題
計算機演算法設計包括很多內容:動態規劃、回溯搜索、分治演算法、分支定界。比如92 年B 題用分枝定界法,97 年B 題是典型的動態規劃問題,此外98 年B 題體現了分治演算法。這方面問題和ACM 程序設計競賽中的問題類似,推薦看一下《計算機演算法設計與分析》(電子工業出版社)等與計算機演算法有關的書。
2.6 最優化理論的三大非經典演算法
這十幾年來最優化理論有了飛速發展,模擬退火法、神經網路、遺傳演算法這三類演算法發展很快。近幾年的賽題越來越復雜,很多問題沒有什麼很好的模型可以借鑒,於是這三類演算法很多時候可以派上用場,比如:97 年A 題的模擬退火演算法,00 年B 題的神經網路分類演算法,象01 年B 題這種難題也可以使用神經網路,還有美國競賽89 年A 題也和BP 演算法有關系,當時是86 年剛提出BP 演算法,89 年就考了,說明賽題可能是當今前沿科技的抽象體現。03 年B 題伽馬刀問題也是目前研究的課題,目前演算法最佳的是遺傳演算法。
2.7 網格演算法和窮舉演算法
網格演算法和窮舉法一樣,只是網格法是連續問題的窮舉。比如要求在N 個變數情況下的最優化問題,那麼對這些變數可取的空間進行采點,比如在[a; b] 區間內取M +1 個點,就是a; a+(b-a)/M; a+2 (b-a)/M; …… ; b 那麼這樣循環就需要進行(M + 1)N 次運算,所以計算量很大。比如97 年A 題、99 年B 題都可以用網格法搜索,這種方法最好在運算速度較快
的計算機中進行,還有要用高級語言來做,最好不要用MATLAB 做網格,否則會算很久的。窮舉法大家都熟悉,就不說了。
2.8 一些連續數據離散化的方法
大部分物理問題的編程解決,都和這種方法有一定的聯系。物理問題是反映我們生活在一個連續的世界中,計算機只能處理離散的量,所以需要對連續量進行離散處理。這種方法應用很廣,而且和上面的很多演算法有關。事實上,網格演算法、蒙特卡羅演算法、模擬退火都用了這個思想。
2.9 數值分析演算法
這類演算法是針對高級語言而專門設的,如果你用的是MATLAB、Mathematica,大可不必准備,因為象數值分析中有很多函數一般的數學軟體是具備的。
2.10 圖象處理演算法
01 年A 題中需要你會讀BMP 圖象、美國賽98 年A 題需要你知道三維插值計算,03 年B 題要求更高,不但需要編程計算還要進行處理,而數模論文中也有很多圖片需要展示,因此圖象處理就是關鍵。做好這類問題,重要的是把MATLAB 學好,特別是圖象處理的部分。

4. 30個數據可以用神經網路預測嗎

30個數據可以用神經網路預測。神經網路本身就是個數學建模,只是經過整理後更容易進行工程實踐了,至於預測那是當然可以的。

5. 數學建模需要哪些知識

數學建模應當掌握的十類演算法及所需編程語言:

1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)。

2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)。

3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、 Lingo軟體實現)。

4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備)。

5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中)。

6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用)。

7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)。

8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)。

9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)。

10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進行處理)。

6. 神經網路到底能幹什麼

神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),版它是一種模仿動權物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
神經網路可以用於模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。

神經網路的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩類:
1、利用神經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理論的研究成果,用數理方法探索功能更加完善、性能更加優越的神經網路模型,深入研究網路演算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網路數理理論,如:神經網路動力學、非線性神經場等。
應用研究可分為以下兩類:
1、神經網路的軟體模擬和硬體實現的研究。
2、神經網路在各個領域中應用的研究。

7. 數學建模是什麼專業,主要是做什麼的

數學建模是數學的分支,不是專業,是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。

當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。

近半個多世紀以來,隨著計算機技術的迅速發展,數學的應用不僅在工程技術、自然科學等領域發揮著越來越重要的作用,而且以空前的廣度和深度向經濟、管理、金融、生物、醫學、環境、地質、人口、交通等新的領域滲透,所謂數學技術已經成為當代高新技術的重要組成部分。

數學建模的應用:

數學是研究現實世界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的。數學的特點不僅在於概念的抽象性、邏輯的嚴密性、結論的明確性和體系的完整性,而且在於它應用的廣泛性。

自從20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在21世紀這個知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國家經濟和科技的後備走到了前沿。

以上內容參考:網路—數學建模

8. 參加數學建模有哪些必學的演算法

1. 蒙特卡洛方法:
又稱計算機隨機性模擬方法,也稱統計實驗方法。可以通過模擬來檢驗自己模型的正確性。

2. 數據擬合、參數估計、插值等數據處理
比賽中常遇到大量的數據需要處理,而處理的數據的關鍵就在於這些方法,通常使用matlab輔助,與圖形結合時還可處理很多有關擬合的問題。

3. 規劃類問題演算法:
包括線性規劃、整數規劃、多元規劃、二次規劃等;競賽中又很多問題都和規劃有關,可以說不少的模型都可以歸結為一組不等式作為約束條件,幾個函數表達式作為目標函數的問題,這類問題,求解是關鍵。
這類問題一般用lingo軟體就能求解。

4. 圖論問題:
主要是考察這類問題的演算法,包括:Dijkstra、Floyd、Prime、Bellman-Ford,最大流、二分匹配等。熟悉ACM的人來說,應該都不難。

5. 計算機演算法設計中的問題:
演算法設計包括:動態規劃、回溯搜索、分治、分支定界法(求解整數解)等。

6. 最優化理論的三大非經典演算法:
a) 模擬退火法(SA)
b) 神經網路(NN)
c) 遺傳演算法(GA)

7. 網格演算法和窮舉演算法

8. 連續問題離散化的方法
因為計算機只能處理離散化的問題,但是實際中數據大多是連續的,因此需要將連續問題離散化之後再用計算機求解。
如:差分代替微分、求和代替積分等思想都是把連續問題離散化的常用方法。

9. 數值分析方法
主要研究各種求解數學問題的數值計算方法,特別是適用於計算機實現的方法與演算法。
包括:函數的數值逼近、數值微分與數值積分、非線性返程的數值解法、數值代數、常微分方程數值解等。
主要應用matlab進行求解。

10. 圖像處理演算法
這部分主要是使用matlab進行圖像處理。
包括展示圖片,進行問題解決說明等。

9. 數學建模的方法有哪些

  1. 預測模塊:灰色預測、時間序列預測、神經網路預測、曲線擬合(線性回歸);

  2. 歸類判別:歐氏距離判別、fisher判別等 ;

  3. 圖論:最短路徑求法 ;

  4. 最優化:列方程組 用lindo 或 lingo軟體解 ;

  5. 其他方法:層次分析法 馬爾可夫鏈 主成分析法 等 。

建模常用演算法,僅供參考:

  1. 蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決 問題的演算法,同時間=可以通過模擬可以來檢驗自己模型的正確性,是比賽時必 用的方法) 。

  2. 數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數 據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具) 。

  3. 線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多 數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通 常使用Lindo、Lingo 軟體實現) 。

  4. 圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等算 法,涉及到圖論的問題可以用這些方法解決,需要認真准備) 。

  5. 動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是算 法設計中比較常用的方法,很多場合可以用到競賽中) 。

  6. 最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些 問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助, 但是演算法的實現比較困難,需慎重使用) 。

  7. 網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很 多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種 暴力方案,最好使用一些高級語言作為編程工具) 。

  8. 一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計 算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替 積分等思想是非常重要的) 。

  9. 數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分 析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編 寫庫函數進行調用) 。

  10. 圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文 中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問 題,通常使用Matlab 進行處理)。

10. 數學建模演算法總結

無總結反省則無進步

寫這篇文章,一是為了總結之前為了准備美賽而學的演算法,而是將演算法羅列並有幾句話解釋方便以後自己需要時來查找。

數學建模問題總共分為四類:

1. 分類問題 2. 優化問題 3. 評價問題 4. 預測問題

我所寫的都是基於數學建模演算法與應用這本書

一 優化問題

線性規劃與非線性規劃方法是最基本經典的:目標函數與約束函數的思想

現代優化演算法:禁忌搜索;模擬退火;遺傳演算法;人工神經網路

模擬退火演算法:

簡介:材料統計力學的研究成果。統計力學表明材料中不同結構對應於粒子的不同能量水平。在高溫條件下,粒子的能量較高,可以自由運動和重新排列。在低溫條件下,粒子能量較低。如果從高溫開始,非常緩慢地降溫(此過程稱為退火),粒子就可以在每個溫度下達到熱平衡。當系統完全被冷卻時,最終形成處於低能狀態的晶體。

思想可用於數學問題的解決 在尋找解的過程中,每一次以一種方法變換新解,再用退火過程的思想,以概率接受該狀態(新解) 退火過程:概率轉化,概率為自然底數的能量/KT次方

遺傳演算法: 遺傳演算法是一種基於自然選擇原理和自然遺傳機制的搜索演算法。模擬自然界中的生命進化機制,在人工系統中實現特定目標的優化。

遺傳演算法的實質是通過群體搜索技術(?),根據適者生存的原則逐代進化,最終得到最優解或准最優解。

具體實現過程(P329~331)

* 編碼

* 確定適應度函數(即目標函數)

* 確定進化參數:群體規模M,交叉概率Pc,變異概率Pm,進化終止條件

* 編碼

* 確定初始種群,使用經典的改良圈演算法

* 目標函數

* 交叉操作

* 變異操作

* 選擇

改良的遺傳演算法

兩點改進 :交叉操作變為了以「門當戶對」原則配對,以混亂序列確定較差點位置 變異操作從交叉操作中分離出來

二 分類問題(以及一些多元分析方法)

* 支持向量機SVM

* 聚類分析

* 主成分分析

* 判別分析

* 典型相關分析

支持向量機SVM: 主要思想:找到一個超平面,使得它能夠盡可能多地將兩類數據點正確分開,同時使分開的兩類數據點距離分類面最遠

聚類分析(極其經典的一種演算法): 對樣本進行分類稱為Q型聚類分析 對指標進行分類稱為R型聚類分析

基礎:樣品相似度的度量——數量化,距離——如閔氏距離

主成分分析法: 其主要目的是希望用較少的變數去解釋原來資料中的大部分變異,將掌握的許多相關性很高的變數轉化成彼此相互獨立或不相關的變數。通常是選出比原始變數個數少,能解釋大部分資料中的變異的幾個新變數,及主成分。實質是一種降維方法

判別分析: 是根據所研究的個體的觀測指標來推斷個體所屬類型的一種統計方法。判別准則在某種意義下是最優的,如錯判概率最小或錯判損失最小。這一方法像是分類方法統稱。 如距離判別,貝葉斯判別和FISHER判別

典型相關分析: 研究兩組變數的相關關系 相對於計算全部相關系數,採用類似主成分的思想,分別找出兩組變數的各自的某個線性組合,討論線性組合之間的相關關系

三 評價與決策問題

評價方法分為兩大類,區別在於確定權重上:一類是主觀賦權:綜合資訊評價定權;另一類為客觀賦權:根據各指標相關關系或各指標值變異程度來確定權數

* 理想解法

* 模糊綜合評判法

* 數據包絡分析法

* 灰色關聯分析法

* 主成分分析法(略)

* 秩和比綜合評價法 理想解法

思想:與最優解(理想解)的距離作為評價樣本的標准

模糊綜合評判法 用於人事考核這類模糊性問題上。有多層次模糊綜合評判法。

數據包絡分析法 是評價具有多指標輸入和多指標輸出系統的較為有效的方法。是以相對效率為概念基礎的。

灰色關聯分析法 思想:計算所有待評價對象與理想對象的灰色加權關聯度,與TOPSIS方法類似

主成分分析法(略)

秩和比綜合評價法 樣本秩的概念: 效益型指標從小到大排序的排名 成本型指標從大到小排序的排名 再計算秩和比,最後統計回歸

四 預測問題

* 微分方程模型

* 灰色預測模型

* 馬爾科夫預測

* 時間序列(略)

* 插值與擬合(略)

* 神經網路

微分方程模型 Lanchester戰爭預測模型。。

灰色預測模型 主要特點:使用的不是原始數據序列,而是生成的數據序列 優點:不需要很多數據·,能利用微分方程來充分挖掘系統的本質,精度高。能將無規律的原始數據進行生成得到規律性較強的生成序列。 缺點:只適用於中短期預測,只適合指數增長的預測

馬爾科夫預測 某一系統未來時刻情況只與現在狀態有關,與過去無關。

馬爾科夫鏈

時齊性的馬爾科夫鏈

時間序列(略)

插值與擬合(略)

神經網路(略)

閱讀全文

與數學建模神經網路相關的資料

熱點內容
有線電視升級失敗 瀏覽:560
火絨安全把文件刪掉了在哪裡找 瀏覽:503
手機qq網路狀態方框 瀏覽:225
哪裡有文件紙袋 瀏覽:873
復制的東西能不能粘貼到空文件夾 瀏覽:876
酒店沒有網路如何繳費 瀏覽:380
win10開機滾動很久 瀏覽:520
可對元數據實例進行的操作有什麼 瀏覽:934
什麼後綴的文件kit 瀏覽:295
word行書字體庫下載 瀏覽:579
iosuc版本歷史版本 瀏覽:14
電影字幕文件製作軟體 瀏覽:723
windows10免密碼登錄 瀏覽:762
iphone5s跑步記步 瀏覽:978
手機網站設計怎麼做好 瀏覽:322
中興路由器修改密碼 瀏覽:391
小米忘記壓縮文件密碼 瀏覽:716
cad哪些字體是形文件 瀏覽:2
word2007寶典pdf 瀏覽:46
lg電視如何連接網路 瀏覽:392

友情鏈接