① 高手們 為什麼資料庫查詢語句加了order by 變得很慢 表中有六千多條記錄 現在打開很慢 什麼原因
order by是用來排序的,如果剛開始的資料庫沒有按照你想要的順序排列的話,用order by的時候就會使得資料庫中的數據重新排列,這樣執行起來就慢了,況且表中的記錄也蠻多的,如果記錄較少的話,就沒什麼快慢之分了
② mysql 視圖查詢速度不慢,但排序和數據數量太慢了,請問有什麼優化方法嗎
針對排序欄位和條件欄位添加聯合索引,還有就是如果查詢是有范圍的,沒有跨維度查詢,可以考慮表分區或分表。
③ 資料庫,演算法:採用什麼排序演算法,感覺什麼order by time/id/slary 不管怎麼變,一下就出來了,怎麼這么快
數據表根據欄位不同排序方式也不同啊。帶索引的欄位本身就是有序的,是通過一個具有線索的B+樹存放的。其中相關索引(聚合索引)排序最快,因為每個元組的數據都是和它關聯的。非索引欄位排序是很慢的,要用到堆排序和,錦標賽演算法和歸並等等,不會用快速排序,因為快排不穩定,而且不能動態規劃,必須一次排完,堆排可以只找最大(或最小)的n條記錄。
④ 可以藉助redis解決資料庫排序慢的問題嗎
可以使用redis中的有序集合zset的數據結構,默認是排序好的。
⑤ 我的程序,查詢資料庫很慢。請問怎麼提高查詢速度
SQL提高查詢效率
1.對查詢進行優化,應盡量避免全表掃描,首先應考慮在 where 及 order by 涉及的列上建立索引。
2.應盡量避免在 where 子句中對欄位進行 null 值判斷,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num is null
可以在num上設置默認值0,確保表中num列沒有null值,然後這樣查詢:
select id from t where num=0
3.應盡量避免在 where 子句中使用!=或<>操作符,否則將引擎放棄使用索引而進行全表掃描。
4.應盡量避免在 where 子句中使用 or 來連接條件,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num=10 or num=20
可以這樣查詢:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否則會導致全表掃描,如:
select id from t where num in(1,2,3)
對於連續的數值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查詢也將導致全表掃描:
select id from t where name like '%abc%'
若要提高效率,可以考慮全文檢索。
7.如果在 where 子句中使用參數,也會導致全表掃描。因為SQL只有在運行時才會解析局部變數,但優化程序不能將訪問計劃的選擇推遲到運行時;它必須在編譯時進行選擇。然而,如果在編譯時建立訪問計劃,變數的值還是未知的,因而無法作為索引選擇的輸入項。如下面語句將進行全表掃描:
select id from t where num=@num
可以改為強制查詢使用索引:
select id from t with(index(索引名)) where num=@num
8.應盡量避免在 where 子句中對欄位進行表達式操作,這將導致引擎放棄使用索引而進行全表掃描。如:
select id from t where num/2=100
應改為:
select id from t where num=100*2
9.應盡量避免在where子句中對欄位進行函數操作,這將導致引擎放棄使用索引而進行全表掃描。如:
select id from t where substring(name,1,3)='abc'--name以abc開頭的id
select id from t where datediff(day,createdate,'2005-11-30')=0--『2005-11-30』生成的id
應改為:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'
10.不要在 where 子句中的「=」左邊進行函數、算術運算或其他表達式運算,否則系統將可能無法正確使用索引。
11.在使用索引欄位作為條件時,如果該索引是復合索引,那麼必須使用到該索引中的第一個欄位作為條件時才能保證系統使用該索引,否則該索引將不會被使用,並且應盡可能的讓欄位順序與索引順序相一致。
12.不要寫一些沒有意義的查詢,如需要生成一個空表結構:
select col1,col2 into #t from t where 1=0
這類代碼不會返回任何結果集,但是會消耗系統資源的,應改成這樣:
create table #t(...)
13.很多時候用 exists 代替 in 是一個好的選擇:
select num from a where num in(select num from b)
用下面的語句替換:
select num from a where exists(select 1 from b where num=a.num)
14.並不是所有索引對查詢都有效,SQL是根據表中數據來進行查詢優化的,當索引列有大量數據重復時,SQL查詢可能不會去利用索引,如一表中有欄位sex,male、female幾乎各一半,那麼即使在sex上建了索引也對查詢效率起不了作用。
15.索引並不是越多越好,索引固然可以提高相應的 select 的效率,但同時也降低了 insert 及 update 的效率,因為 insert 或 update 時有可能會重建索引,所以怎樣建索引需要慎重考慮,視具體情況而定。一個表的索引數最好不要超過6個,若太多則應考慮一些不常使用到的列上建的索引是否有必要。
16.應盡可能的避免更新 clustered 索引數據列,因為 clustered 索引數據列的順序就是表記錄的物理存儲順序,一旦該列值改變將導致整個表記錄的順序的調整,會耗費相當大的資源。若應用系統需要頻繁更新 clustered 索引數據列,那麼需要考慮是否應將該索引建為 clustered 索引。
17.盡量使用數字型欄位,若只含數值信息的欄位盡量不要設計為字元型,這會降低查詢和連接的性能,並會增加存儲開銷。這是因為引擎在處理查詢和連接時會逐個比較字元串中每一個字元,而對於數字型而言只需要比較一次就夠了。
18.盡可能的使用 varchar/nvarchar 代替 char/nchar ,因為首先變長欄位存儲空間小,可以節省存儲空間,其次對於查詢來說,在一個相對較小的欄位內搜索效率顯然要高些。
19.任何地方都不要使用 select * from t ,用具體的欄位列表代替「*」,不要返回用不到的任何欄位。
20.盡量使用表變數來代替臨時表。如果表變數包含大量數據,請注意索引非常有限(只有主鍵索引)。
21.避免頻繁創建和刪除臨時表,以減少系統表資源的消耗。
22.臨時表並不是不可使用,適當地使用它們可以使某些常式更有效,例如,當需要重復引用大型表或常用表中的某個數據集時。但是,對於一次性事件,最好使用導出表。
23.在新建臨時表時,如果一次性插入數據量很大,那麼可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果數據量不大,為了緩和系統表的資源,應先create table,然後insert。
24.如果使用到了臨時表,在存儲過程的最後務必將所有的臨時表顯式刪除,先 truncate table ,然後 drop table ,這樣可以避免系統表的較長時間鎖定。
25.盡量避免使用游標,因為游標的效率較差,如果游標操作的數據超過1萬行,那麼就應該考慮改寫。
26.使用基於游標的方法或臨時表方法之前,應先尋找基於集的解決方案來解決問題,基於集的方法通常更有效。
27.與臨時表一樣,游標並不是不可使用。對小型數據集使用 FAST_FORWARD 游標通常要優於其他逐行處理方法,尤其是在必須引用幾個表才能獲得所需的數據時。在結果集中包括「合計」的常式通常要比使用游標執行的速度快。如果開發時間允許,基於游標的方法和基於集的方法都可以嘗試一下,看哪一種方法的效果更好。
28.在所有的存儲過程和觸發器的開始處設置 SET NOCOUNT ON ,在結束時設置 SET NOCOUNT OFF 。無需在執行存儲過程和觸發器的每個語句後向客戶端發送 DONE_IN_PROC 消息。
29.盡量避免大事務操作,提高系統並發能力。
30.盡量避免向客戶端返回大數據量,若數據量過大,應該考慮相應需求是否合理
1、避免將欄位設為「允許為空」
2、數據表設計要規范
3、深入分析數據操作所要對資料庫進行的操作
4、盡量不要使用臨時表
5、多多使用事務
6、盡量不要使用游標
7、避免死鎖
8、要注意讀寫鎖的使用
9、不要打開大的數據集
10、不要使用伺服器端游標
11、在程序編碼時使用大數據量的資料庫
12、不要給「性別」列創建索引
13、注意超時問題
14、不要使用Select *
15、在細節表中插入紀錄時,不要在主表執行Select MAX(ID)
16、盡量不要使用TEXT數據類型
17、使用參數查詢
18、不要使用Insert導入大批的數據
19、學會分析查詢
20、使用參照完整性
21、用INNER JOIN 和LEFT JOIN代替Where
提高SQL查詢效率(要點與技巧):
· 技巧一:
問題類型:ACCESS資料庫欄位中含有日文片假名或其它不明字元時查詢會提示內存溢出。
解決方法:修改查詢語句
sql="select * from tablename where column like '%"&word&"%'"
改為
sql="select * from tablename"
rs.filter = " column like '%"&word&"%'"
===========================================================
技巧二:
問題類型:如何用簡易的辦法實現類似網路的多關鍵詞查詢(多關鍵詞用空格或其它符號間隔)。
解決方法:
'//用空格分割查詢字元串
ck=split(word," ")
'//得到分割後的數量
sck=UBound(ck)
sql="select * tablename where"
在一個欄位中查詢
For i = 0 To sck
SQL = SQL & tempJoinWord & "(" & _
"column like '"&ck(i)&"%')"
tempJoinWord = " and "
Next
在二個欄位中同時查詢
For i = 0 To sck
SQL = SQL & tempJoinWord & "(" & _
"column like '"&ck(i)&"%' or " & _
"column1 like '"&ck(i)&"%')"
tempJoinWord = " and "
Next
===========================================================
技巧三:大大提高查詢效率的幾種技巧
1. 盡量不要使用 or,使用or會引起全表掃描,將大大降低查詢效率。
2. 經過實踐驗證,charindex()並不比前面加%的like更能提高查詢效率,並且charindex()會使索引失去作用(指sqlserver資料庫)
3. column like '%"&word&"%' 會使索引不起作用
column like '"&word&"%' 會使索引起作用(去掉前面的%符號)
(指sqlserver資料庫)
4. '%"&word&"%' 與'"&word&"%' 在查詢時的區別:
比如你的欄位內容為 一個容易受傷的女人
'%"&word&"%' :會通配所有字元串,不論查「受傷」還是查「一個」,都會顯示結果。
'"&word&"%' :只通配前面的字元串,例如查「受傷」是沒有結果的,只有查「一個」,才會顯示結果。
5. 欄位提取要按照「需多少、提多少」的原則,避免「select *」,盡量使用「select 欄位1,欄位2,欄位3........」。實踐證明:每少提取一個欄位,數據的提取速度就會有相應的提升。提升的速度還要看您舍棄的欄位的大小來判斷。
6. order by按聚集索引列排序效率最高。一個sqlserver數據表只能建立一個聚集索引,一般默認為ID,也可以改為其它的欄位。
7. 為你的表建立適當的索引,建立索引可以使你的查詢速度提高幾十幾百倍。(指sqlserver資料庫)
· 以下是建立索引與不建立索引的一個查詢效率分析:
Sqlserver索引與查詢效率分析。
表 News
欄位
Id:自動編號
Title:文章標題
Author:作者
Content:內容
Star:優先順序
Addtime:時間
記錄:100萬條
測試機器:P4 2.8/1G內存/IDE硬碟
=======================================================
方案1:
主鍵Id,默認為聚集索引,不建立其它非聚集索引
select * from News where Title like '%"&word&"%' or Author like '%"&word&"%' order by Id desc
從欄位Title和Author中模糊檢索,按Id排序
查詢時間:50秒
=======================================================
方案2:
主鍵Id,默認為聚集索引
在Title、Author、Star上建立非聚集索引
select * from News where Title like '"&word&"%' or Author like '"&word&"%' order by Id desc
從欄位Title和Author中模糊檢索,按Id排序
查詢時間:2 - 2.5秒
=======================================================
方案3:
主鍵Id,默認為聚集索引
在Title、Author、Star上建立非聚集索引
select * from News where Title like '"&word&"%' or Author like '"&word&"%' order by Star desc
從欄位Title和Author中模糊檢索,按Star排序
查詢時間:2 秒
=======================================================
方案4:
主鍵Id,默認為聚集索引
在Title、Author、Star上建立非聚集索引
select * from News where Title like '"&word&"%' or Author like '"&word&"%'
從欄位Title和Author中模糊檢索,不排序
查詢時間:1.8 - 2 秒
=======================================================
方案5:
主鍵Id,默認為聚集索引
在Title、Author、Star上建立非聚集索引
select * from News where Title like '"&word&"%'
或
select * from News where Author like '"&word&"%'
從欄位Title 或 Author中檢索,不排序
查詢時間:1秒
· 如何提高SQL語言的查詢效率?
問:請問我如何才能提高SQL語言的查詢效率呢?
答:這得從頭說起:
由於SQL是面向結果而不是面向過程的查詢語言,所以一般支持SQL語言的大型關系型資料庫都使用一個基於查詢成本的優化器,為即時查詢提供一個最佳的執行策略。對於優化器,輸入是一條查詢語句,輸出是一個執行策略。
一條SQL查詢語句可以有多種執行策略,優化器將估計出全部執行方法中所需時間最少的所謂成本最低的那一種方法。所有優化都是基於用記所使用的查詢語句中的where子句,優化器對where子句中的優化主要用搜索參數(Serach Argument)。
搜索參數的核心思想就是資料庫使用表中欄位的索引來查詢數據,而不必直接查詢記錄中的數據。
帶有 =、<、<=、>、>= 等操作符的條件語句可以直接使用索引,如下列是搜索參數:
emp_id = "10001" 或 salary > 3000 或 a =1 and c = 7
而下列則不是搜索參數:
salary = emp_salary 或 dep_id != 10 或 salary * 12 >= 3000 或 a=1 or c=7
應當盡可能提供一些冗餘的搜索參數,使優化器有更多的選擇餘地。請看以下3種方法:
第一種方法:
select employee.emp_name,department.dep_name from department,employee where (employee.dep_id = department.dep_id) and (department.dep_code="01") and (employee.dep_code="01");
它的搜索分析結果如下:
Estimate 2 I/O operations
Scan department using primary key
for rows where dep_code equals "01"
Estimate getting here 1 times
Scan employee sequentially
Estimate getting here 5 times
第二種方法:
select employee.emp_name,department.dep_name from department,employee where (employee.dep_id = department.dep_id) and (department.dep_code="01");
它的搜索分析結果如下:
Estimate 2 I/O operations
Scan department using primary key
for rows where dep_code equals "01"
Estimate getting here 1 times
Scan employee sequentially
Estimate getting here 5 times
第一種方法與第二種運行效率相同,但第一種方法最好,因為它為優化器提供了更多的選擇機會。
第三種方法:
select employee.emp_name,department.dep_name from department,employee where (employee.dep_id = department.dep_id) and (employee.dep_code="01");
這種方法最不好,因為它無法使用索引,也就是無法優化……
使用SQL語句時應注意以下幾點:
1、避免使用不兼容的數據類型。例如,Float和Integer,Char和Varchar,Binary和Long Binary不兼容的。數據類型的不兼容可能使優化器無法執行一些本可以進行的優化操作。例如:
select emp_name form employee where salary > 3000;
在此語句中若salary是Float類型的,則優化器很難對其進行優化,因為3000是個整數,我們應在編程時使用3000.0而不要等運行時讓DBMS進行轉化。
2、盡量不要使用表達式,因它在編繹時是無法得到的,所以SQL只能使用其平均密度來估計將要命中的記錄數。
3、避免對搜索參數使用其他的數學操作符。如:
select emp_name from employee where salary * 12 > 3000;
應改為:
select emp_name from employee where salary > 250;
4、避免使用 != 或 <> 等這樣的操作符,因為它會使系統無法使用索引,而只能直接搜索表中的數據。
· ORACAL中的應用
一個1600萬數據表--簡訊上行表TBL_SMS_MO
結構:
CREATE TABLE TBL_SMS_MO
(
SMS_ID NUMBER,
MO_ID VARCHAR2(50),
MOBILE VARCHAR2(11),
SPNUMBER VARCHAR2(20),
MESSAGE VARCHAR2(150),
TRADE_CODE VARCHAR2(20),
LINK_ID VARCHAR2(50),
GATEWAY_ID NUMBER,
GATEWAY_PORT NUMBER,
MO_TIME DATE DEFAULT SYSDATE
);
CREATE INDEX IDX_MO_DATE ON TBL_SMS_MO (MO_TIME)
PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE
(
INITIAL 1M
NEXT 1M
MINEXTENTS 1
MAXEXTENTS UNLIMITED
PCTINCREASE 0
);
CREATE INDEX IDX_MO_MOBILE ON TBL_SMS_MO (MOBILE)
PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE
(
INITIAL 64K
NEXT 1M
MINEXTENTS 1
MAXEXTENTS UNLIMITED
PCTINCREASE 0
);
問題:從表中查詢某時間段內某手機發送的短消息,如下SQL語句:
SELECT MOBILE,MESSAGE,TRADE_CODE,MO_TIME
FROM TBL_SMS_MO
WHERE MOBILE='130XXXXXXXX'
AND MO_TIME BETWEEN TO_DATE('2006-04-01','YYYY-MM-DD HH24:MI:SS') AND TO_DATE('2006-04-07','YYYY-MM-DD HH24:MI:SS')
ORDER BY MO_TIME DESC
返回結果大約需要10分鍾,應用於網頁查詢,簡直難以忍受。
分析:
在PL/SQL Developer,點擊「Explain Plan」按鈕(或F5鍵),對SQL進行分析,發現預設使用的索引是IDX_MO_DATE。問題可能出在這里,因為相對於總數量1600萬數據來說,都mobile的數據是很少的,如果使用IDX_MO_MOBILE比較容易鎖定數據。
如下優化:
SELECT /*+ index(TBL_SMS_MO IDX_MO_MOBILE) */ MOBILE,MESSAGE,TRADE_CODE,MO_TIME
FROM TBL_SMS_MO
WHERE MOBILE='130XXXXXXXX'
AND MO_TIME BETWEEN TO_DATE('2006-04-01','YYYY-MM-DD HH24:MI:SS') AND TO_DATE('2006-04-07','YYYY-MM-DD HH24:MI:SS')
ORDER BY MO_TIME DESC
測試:
按F8運行這個SQL,哇~... ... 2.360s,這就是差別。
http://www.cnblogs.com/ShaYeBlog/archive/2013/07/31/3227244.html
⑥ 資料庫設置索引後排序查詢速度變慢怎麼回事
可能是排序的欄位沒有用到索引,而在查詢中又用到的索引,所以造成兩方面的計算了
⑦ mysql資料庫查詢好慢怎麼解決
一、MySQL資料庫有幾個配置選項可以幫助我們及時捕獲低效SQL語句
1,slow_query_log
這個參數設置為ON,可以捕獲執行時間超過一定數值的SQL語句。
2,long_query_time
當SQL語句執行時間超過此數值時,就會被記錄到日誌中,建議設置為1或者更短。
3,slow_query_log_file
記錄日誌的文件名。
4,log_queries_not_using_indexes
這個參數設置為ON,可以捕獲到所有未使用索引的SQL語句,盡管這個SQL語句有可能執行得挺快。
二、檢測mysql中sql語句的效率的方法
1、通過查詢日誌
(1)、Windows下開啟MySQL慢查詢
MySQL在Windows系統中的配置文件一般是是my.ini找到[mysqld]下面加上
代碼如下
log-slow-queries = F:/MySQL/log/mysqlslowquery。log
long_query_time = 2
(2)、Linux下啟用MySQL慢查詢
MySQL在Windows系統中的配置文件一般是是my.cnf找到[mysqld]下面加上
代碼如下
log-slow-queries=/data/mysqldata/slowquery。log
long_query_time=2
說明
log-slow-queries = F:/MySQL/log/mysqlslowquery。
為慢查詢日誌存放的位置,一般這個目錄要有MySQL的運行帳號的可寫許可權,一般都將這個目錄設置為MySQL的數據存放目錄;
long_query_time=2中的2表示查詢超過兩秒才記錄;
2.show processlist 命令
SHOW PROCESSLIST顯示哪些線程正在運行。您也可以使用mysqladmin processlist語句得到此信息。
各列的含義和用途:
ID列
一個標識,你要kill一個語句的時候很有用,用命令殺掉此查詢 /*/mysqladmin kill 進程號。
user列
顯示單前用戶,如果不是root,這個命令就只顯示你許可權范圍內的sql語句。
host列
顯示這個語句是從哪個ip的哪個埠上發出的。用於追蹤出問題語句的用戶。
db列
顯示這個進程目前連接的是哪個資料庫。
command列
顯示當前連接的執行的命令,一般就是休眠(sleep),查詢(query),連接(connect)。
time列
此這個狀態持續的時間,單位是秒。
state列
顯示使用當前連接的sql語句的狀態,很重要的列,後續會有所有的狀態的描述,請注意,state只是語句執行中的某一個狀態,一個 sql語句,以查詢為例,可能需要經過ing to tmp table,Sorting result,Sending data等狀態才可以完成
info列
顯示這個sql語句,因為長度有限,所以長的sql語句就顯示不全,但是一個判斷問題語句的重要依據。
這個命令中最關鍵的就是state列,mysql列出的狀態主要有以下幾種:
Checking table
正在檢查數據表(這是自動的)。
Closing tables
正在將表中修改的數據刷新到磁碟中,同時正在關閉已經用完的表。這是一個很快的操作,如果不是這樣的話,就應該確認磁碟空間是否已經滿了或者磁碟是否正處於重負中。
Connect Out
復制從伺服器正在連接主伺服器。
Copying to tmp table on disk
由於臨時結果集大於tmp_table_size,正在將臨時表從內存存儲轉為磁碟存儲以此節省內存。
Creating tmp table
正在創建臨時表以存放部分查詢結果。
deleting from main table
伺服器正在執行多表刪除中的第一部分,剛刪除第一個表。
deleting from reference tables
伺服器正在執行多表刪除中的第二部分,正在刪除其他表的記錄。
Flushing tables
正在執行FLUSH TABLES,等待其他線程關閉數據表。
Killed
發送了一個kill請求給某線程,那麼這個線程將會檢查kill標志位,同時會放棄下一個kill請求。MySQL會在每次的主循環中檢查kill標志位,不過有些情況下該線程可能會過一小段才能死掉。如果該線程程被其他線程鎖住了,那麼kill請求會在鎖釋放時馬上生效。
Locked
被其他查詢鎖住了。
Sending data
正在處理SELECT查詢的記錄,同時正在把結果發送給客戶端。
Sorting for group
正在為GROUP BY做排序。
Sorting for order
正在為ORDER BY做排序。
Opening tables
這個過程應該會很快,除非受到其他因素的干擾。例如,在執ALTER TABLE或LOCK TABLE語句行完以前,數據表無法被其他線程打開。正嘗試打開一個表。
Removing plicates
正在執行一個SELECT DISTINCT方式的查詢,但是MySQL無法在前一個階段優化掉那些重復的記錄。因此,MySQL需要再次去掉重復的記錄,然後再把結果發送給客戶端。
Reopen table
獲得了對一個表的鎖,但是必須在表結構修改之後才能獲得這個鎖。已經釋放鎖,關閉數據表,正嘗試重新打開數據表。
Repair by sorting
修復指令正在排序以創建索引。
Repair with keycache
修復指令正在利用索引緩存一個一個地創建新索引。它會比Repair by sorting慢些。
Searching rows for update
正在講符合條件的記錄找出來以備更新。它必須在UPDATE要修改相關的記錄之前就完成了。
Sleeping
正在等待客戶端發送新請求.
System lock
正在等待取得一個外部的系統鎖。如果當前沒有運行多個mysqld伺服器同時請求同一個表,那麼可以通過增加--skip-external-locking參數來禁止外部系統鎖。
Upgrading lock
INSERT DELAYED正在嘗試取得一個鎖表以插入新記錄。
Updating
正在搜索匹配的記錄,並且修改它們。
User Lock
正在等待GET_LOCK()。
Waiting for tables
該線程得到通知,數據表結構已經被修改了,需要重新打開數據表以取得新的結構。然後,為了能的重新打開數據表,必須等到所有其他線程關閉這個表。以下幾種情況下會產生這個通知:FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE, REPAIR TABLE, ANALYZE TABLE,或OPTIMIZE TABLE。
waiting for handler insert
INSERT DELAYED已經處理完了所有待處理的插入操作,正在等待新的請求。
大部分狀態對應很快的操作,只要有一個線程保持同一個狀態好幾秒鍾,那麼可能是有問題發生了,需要檢查一下。
還有其他的狀態沒在上面中列出來,不過它們大部分只是在查看伺服器是否有存在錯誤是才用得著。
例如如圖:
3、explain來了解SQL執行的狀態
explain顯示了mysql如何使用索引來處理select語句以及連接表。可以幫助選擇更好的索引和寫出更優化的查詢語句。
使用方法,在select語句前加上explain就可以了:
例如:
explain select surname,first_name form a,b where a.id=b.id
結果如圖
EXPLAIN列的解釋
table
顯示這一行的數據是關於哪張表的
type
這是重要的列,顯示連接使用了何種類型。從最好到最差的連接類型為const、eq_reg、ref、range、indexhe和ALL
possible_keys
顯示可能應用在這張表中的索引。如果為空,沒有可能的索引。可以為相關的域從WHERE語句中選擇一個合適的語句
key
實際使用的索引。如果為NULL,則沒有使用索引。很少的情況下,MYSQL會選擇優化不足的索引。這種情況下,可以在SELECT語句 中使用USE INDEX(indexname)來強制使用一個索引或者用IGNORE INDEX(indexname)來強制MYSQL忽略索引
key_len
使用的索引的長度。在不損失精確性的情況下,長度越短越好
ref
顯示索引的哪一列被使用了,如果可能的話,是一個常數
rows
MYSQL認為必須檢查的用來返回請求數據的行數
Extra
關於MYSQL如何解析查詢的額外信息。將在表4.3中討論,但這里可以看到的壞的例子是Using temporary和Using filesort,意思MYSQL根本不能使用索引,結果是檢索會很慢
extra列返回的描述的意義
Distinct
一旦MYSQL找到了與行相聯合匹配的行,就不再搜索了
Not exists
MYSQL優化了LEFT JOIN,一旦它找到了匹配LEFT JOIN標準的行,就不再搜索了
Range checked for each Record(index map:#)
沒有找到理想的索引,因此對於從前面表中來的每一個行組合,MYSQL檢查使用哪個索引,並用它來從表中返回行。這是使用索引的最慢的連接之一
Using filesort
看到這個的時候,查詢就需要優化了。MYSQL需要進行額外的步驟來發現如何對返回的行排序。它根據連接類型以及存儲排序鍵值和匹配條件的全部行的行指針來排序全部行
Using index
列數據是從僅僅使用了索引中的信息而沒有讀取實際的行動的表返回的,這發生在對表的全部的請求列都是同一個索引的部分的時候
Using temporary
看到這個的時候,查詢需要優化了。這里,MYSQL需要創建一個臨時表來存儲結果,這通常發生在對不同的列集進行ORDER BY上,而不是GROUP BY上
Where used
使用了WHERE從句來限制哪些行將與下一張表匹配或者是返回給用戶。如果不想返回表中的全部行,並且連接類型ALL或index,這就會發生,或者是查詢有問題不同連接類型的解釋(按照效率高低的順序排序)
const
表中的一個記錄的最大值能夠匹配這個查詢(索引可以是主鍵或惟一索引)。因為只有一行,這個值實際就是常數,因為MYSQL先讀這個值然後把它當做常數來對待
eq_ref
在連接中,MYSQL在查詢時,從前面的表中,對每一個記錄的聯合都從表中讀取一個記錄,它在查詢使用了索引為主鍵或惟一鍵的全部時使用
ref
這個連接類型只有在查詢使用了不是惟一或主鍵的鍵或者是這些類型的部分(比如,利用最左邊前綴)時發生。對於之前的表的每一個行聯合,全部記錄都將從表中讀出。這個類型嚴重依賴於根據索引匹配的記錄多少—越少越好
range
這個連接類型使用索引返回一個范圍中的行,比如使用>或<查找東西時發生的情況
index
這個連接類型對前面的表中的每一個記錄聯合進行完全掃描(比ALL更好,因為索引一般小於表數據)
ALL
這個連接類型對於前面的每一個記錄聯合進行完全掃描,這一般比較糟糕,應該盡量避免
⑧ mysql 數據幾十萬時加時間排序導致查詢速度慢的原因
實測41w數據100條分頁查詢,如果不加order by 時間都是毫秒級,一旦加了時間排序結果至少1.5s以上,只需要給時間欄位添加索引,查詢速度瞬間回歸毫秒級
⑨ mysql order by 排序效率慢 SQL 附上
既然查詢速度特別快 而且你也只需要排名前一百條的語句,可以用where語句再過濾一下,然後對查詢出來的語句再進行排序。相對來說需要排序的數據量會少一些。
例如:
1、select top 100 * from mytable order by operateDate;
2、select * from (select top 100 * from mytable ) a order by a.operateDate;
如果表內數據量比較大的話 ,2 的速度是優於1的。畢竟1是先對表內所有數據排序,然後再進行查詢,2隻需要排序過濾之後的數據。
⑩ 在sql資料庫中聯表查詢,實現在多個表之間的數據取出,進行排序,分頁顯示,速度很慢,請高人指點!
where ( a.iyear='2006' or a.iyear='2007' or a.iyear='2008' or a.iyear='2009')
條件改成a.iyear in ('2006,'2007','2008','2009') 試試