Ⅰ 电信软件有哪些
电信软件包括:
1. 电信业务管理软件
2. 通信协议软件
3. 电信网络管理软件
4. 电信客户服务软件等。
详细解释如下:
电信业务管理软件是用于管理电信业务的一系列软件工具。这些软件工具涵盖了从客户信息管理、业务开通、计费结算到统计分析等各个方面,确保电信业务的顺利进行。这类软件主要服务于电信运营商和企业,帮助它们实现对业务的高效管理。例如,电信资源管理系统和CRM系统就是典型的电信业务管理软件。
通信协议软件是确保不同网络设备之间顺畅通信的关键。在电信领域,通信协议软件扮演着核心角色,它确保了数据的正确传输和处理。这类软件包括了实现不同通信协议的软件模块,如PSTN、IP网络等的相关协议软件。它们在电信网络运行过程中起到关键作用,确保网络的稳定性和可靠性。
电信网络管理软件主要用于监控和管理电信网络。这类软件能够实时检测网络状态,及时发现并解决网络故障,确保网络的稳定运行。此外,它们还能对网络性能进行优化,提高网络服务质量。例如,网络资源管理系统和网络性能监控软件都属于电信网络管理软件的范畴。它们对于电信运营商和企业来说非常重要,有助于及时发现并解决网络问题。此外还有一些网络安全管理软件也可以归属于电信软件类。它可以保护电信系统的安全,防止黑客攻击和数据泄露等事件的发生。这些软件通过实时监控网络和系统的安全状况,及时发现并应对各种安全威胁,确保电信系统的稳定运行和数据安全。而电信客户服务软件则是用于提升客户服务质量的重要工具。它们包括客户信息管理、服务请求处理、投诉管理等模块,确保电信运营商能够快速响应客户需求并解决问题,提升客户满意度和忠诚度。此类软件在提高运营商服务质量和竞争力方面起到了重要作用。
Ⅱ 电信行业的三大系统 BSS OSS MSS的区别和解释
电信行业的三大系统分别是BSS、OSS和MSS,它们各自承担不同的功能。BSS业务支撑系统主要负责为客户提供业务和服务,包括客户关系管理、数据采集系统、计费账务、综合结算、营销支撑等功能模块。OSS操作支持系统则是电信业务开展和运营所需的重要支撑平台,由网络管理、系统管理、计费、营业、账务和客户服务等部分组成,通过统一的信息总线将系统间有机整合在一起。MSS管理支撑系统则专注于实体渠道管理,其中包括完善社会渠道酬金管理功能,优化营业厅应用界面,实现营业厅现场排队情况监控,以及营业厅电子签名等。
BSS系统通过融合计费、账务处理、账务管理、综合结算和统计分析等功能,支撑分散账期业务模式。例如,基于DCC协议建立GGSN与BOSS的互联,实现对GPRS业务的欠费风险控制能力,同时提升数据业务流量提醒的及时性和准确性。OSS系统主要负责全网通信质量及运行的检验和管理,记录和收集全网运行中的各种数据情况,并对全网内各设备执行监视和控制的职能。这使得OSS能够确保电信网络的稳定运行,提高服务质量。MSS系统则专注于客户关系管理流程,包括客户接口管理、市场销售的实现、定单处理、问题处理、客户QOS管理、帐单管理及对用户需求、信用度、价值的分析。这些功能使得MSS能够更好地服务客户,提高客户满意度。
总的来说,BSS、OSS和MSS三个系统在电信行业中发挥着重要作用。BSS关注业务和服务,OSS关注技术支撑和管理,而MSS则专注于实体渠道管理和服务质量。它们相互协作,共同推动电信行业的健康发展。
Ⅲ 给我解释: SDH(Synchronous Digital Hierarchy)同步数字系列.
SDH与ATM
同步数字体系(SDH)是一种光纤通信系统中的数字通信体系,又称同步数字复接体制。它是一套新的国际标准。SDH既是一个组网原则,又是一套复用的方法。在SDH基础上,可以建成一个灵活,可靠,能够进行遥控管理的全国电信传输网以至全世界的电信传输网。这个传输网可以很方便地扩展新业务,还可以使不同厂家生产的设备进行互通使用。
光纤具有高带宽、传输距离远等优点,光纤已成为宽带综合数字业务网的主要物理连接媒介,不过,如果仅凭单纯的光缆连接,并不能构成担负各种复杂应用的传输网。骨干传输需要由复杂的传输协议来支撑,并借助光纤作为物理媒介,80年代美国贝尔通讯研究所首先提出了SONET(Synchronous Optical Networking 同步光纤网络)的概念。CCITT采纳并修改和扩充了这一概念。将其命名为SDH(Synchronous Digital Hierarchy 同步数字系列)。SDH网是对原有PDH(Plesiochronous Digital Hierarchy准同步系列)网的一次革命。过去的光纤通信系统没有一套国际上统一的标准,都是由各个国家各自开发出不同的系统,称准同步数字体系PDH。因此,各国所采用的速率(传输信号的速度)、线路码型、接口标准、结构都不相同。无法在光路上实现不同厂家设备的互通和直接联网,造成许多技术上的困难和费用的增加。
SDH是为了克服PDH的缺点而产生的,是有一个明确的目标再定规范然后研制设备。这样就可以按最完善的方式设定未来通信网要求的系统和设备。
SDH是一项成熟的传输技术。使用开放技术的第三代SDH网络现在已经建成。SDH节点类型有ADM(上/下复用器)、DXC(数字交叉连接)、TM(终端复用器)和(中继器),使用这些节点设备可建成链状、星形、环行及网状网络。
SDH有以下主要的特点:
(1)在全世界范围统一了体系中各级信号的传输速率。SDH定义的速率为N*155.520Mb/s(Mb/s表示每秒钟传输的兆比特数,比特是量度信息的单位,N=1,2,3,......)。
(2)简化了复接和分接技术。过去PDH对于较低速率(比如容量为30路的传输速率2Mb/s)要在容量为1920路的传输速率140Mb/s系统中复接或分接的话,就必须先通过8Mb/s复接,34Mb/s复接,然后复接入140Mb/s,十分麻烦。SDH可以把2Mb/s直接复接入(或分接)140Mb/s,而不必逐级进行。简化了复接、分接技术,上下电路方便,大大提高了通信网的灵活性和可靠性。
(3)确定了全世界通用的光接口标准。这样就使得不同厂家生产的设备可以按统一接口标准互通使用,节省网络的成本。
(4)在传输的码型中,安排了较多的富余比特,供作网路中管理控制之用,使网路中检测故障,监测传输性能等能力大大加强。
SDH是国际电信联盟CCITT于1988年正式推荐的,并称为同步数字体系。SDH是一个十分重要的标准,它不仅适用于光纤通信,原则上也适用于微波和卫星通信。
一个典型的SDH网络管理系统有3层,依次为网络管理层(又称网络控制层NCL)、网元管理层(EM)和网元层(NE)如图:
网络管理系统
网元管理系统A 网元管理系统B 网元管理系统C
NE NE NE NE NE NE NE NE NE
同步数字体系信号的最基本也是最重要的模块信号是STM-1,其速率为155。520Mb/S。4个STM-1构成STM-4,其速率为622。080Mb/S。4个STM-4构成STM-16,其速率为2488。320Mb/S。即STM-N是一种以字节结构为基础的矩形块状帧结构,其结构安排如图:
9×270×N字节
传输方向
STM-N 净负荷
(含POH)
1
SOH
AU PTR
SOH
9
9×N 261×N
270×N列
其中,SOH为段开销,AU PTR为管理单元指针,POH为通道开销。
随着SDH技术引入,传输系统不仅具有提供信号传播的物理过程的功能,而且提供对信号的处理、监控等过程的功能。SDH 通过多种容器C和虚容器VC以及级联的复帧结构的定义,使其可支持多种电路层的业务,如各种速率的异步数字系列、DQDB、FDDI、ATM等,以及将来可能出现的各种新业务。段开销中大量的备用通道增强了SDH网的可扩展性。通过软件控制使原来PDH中人工更改配线的方法实现了交叉连接和分插复用连接,提供了灵活的上/下电路的能力,并使网络拓扑动态可变,增强了网络适应业务发展的灵活性和安全性,可在更大几何范围内实现电路的保护、高度和通信能力的优化利用,从而为增强组网能力奠定基础,只需几秒就可以重新组网。特别是SDH自愈环,可以在电路出现故障后,几十毫秒内迅速恢复。SDH的这些优势使它成为宽带业务数字网的基础传输网。近年来,2.4Gb/s SDH系统已走向实用。10GB/S系统已基本完成实验室工作。
与SDH网络管理有关的主要操作运行接口为Q接口(含Q或Q)和F接口。Q接口应符合ITU-T建议Q.811和Q.812中相关协议栈的规定。ITU-T并不强制协议栈的选择,但实际适用SDH网的主要协议栈是CON S1、CLN S1和CLN S2。通常,NE经LCN连至局内NE管理系统时所用的Q接口,采用最适于无连接模式的局域网协议栈CLN S1;而连至远端NE管理系统时所用的Q接口,多采用既能支持无连接模式,又能支持X.25的面向连接方式的CLN S2协议栈,也可以采用完全的面向连接方式的CON S1协议栈。
ATM(异步传输模式)技术是一项正在蓬勃发展的新技术。其产生的动因是试图找到一种能统一传送带宽和质量要求不同的电信业务的方式,以便在宽带通信网络中提供更具吸引力的电信业务,如数字电视、数字高清晰度电视、高质量可视电话、视频点播等。
ITU-T定义ATM为“以信元为信息传输,复接和交换的基本单位的传送方式”。用ATM技术构建的网络称为ATM传输网,它是由VC级的信道网(或电信网),VP级的通路网和传输媒体网3级组成。而各级网由终端、中继点、连接及链路4部分构成。在实际的接续过程中,VC连接是指终端——终端的连接,其终点是终端,VC连接的中继点实际上是由交换机实现其功能,即称为虚信道处理(VCH,Virtual Channel Handler)功能;VP的连接是集中VC链路,VC链路的两端是VP连接的终点,即VP的终端可以是交换机,其功能由交叉连接设备来完成,即称为虚通路处理(VPH,Virtual Path Handler)功能。VCH和VPH的交换处理是一样的,所不同的是选路用的信头结构不同,分别为VCI和VPI。
在ITU-T的I.321建议中定义了B-ISDN协议参考模型,如下图。它包括三个面:用户面、控制面和管理面,而在每个面中又是分层的,分为物理层、ATM层、AAL层和高层。
协议参考模型中的三个面分别完成不同的功能:
用户平面:采用分层结构,提供用户信息流的传送,同时也具有一定的控制功能,如流量控制、差错控制等;
控制平面:采用分层结构,完成呼叫控制和连接控制功能,利用信令进行呼叫和连接的建立、监视和释放;
管理平面:包括层管理和面管理。其中层管理采用分层结构,完成与各协议层实体的资源和参数相关的管理功能,如元信令。同时层管理还处理与各层相关的OAM信息流;面管理不分层,它完成与整个系统相关的管理功能,并对所有平面起协调作用。
ATM具有以下特点:
(1)采用面向连接并预约传输资源的方式
为提高处理速度,ATM采用面向连接的虚电路方式工作,即在通信开始时先建立虚电路(虚电路包括虚信道和虚通路),用户将虚电路的标识写入信头VCI/VPI中,网络根据虚电路标识将信息送往目的地。同时在呼叫过程向网络提出传输所希望使用的资源,网络根据当前的状态决定是否接受这个呼叫。其中资源的约定并不像电路交换中给出确定的电路或PCM时隙,只是用以表示将来通信过程所可能使用的通信速率。这种方式避免了复杂的信元顺序控制工作,通过合理的QoS、流量控制、网络资源管理控制以及各种差错控制技术,使信元丢失率降到各种业务可以接受的程度,满足各类业务的语义透明性要求。可以说既兼顾了网络运营效率,又能够满足接入网络的连接进行快速数据传输。
(2)无逐段链路的差错控制和流量控制,时延小
ATM协议运行是在误码率很低的光纤传输网上,同时预约资源机制保证网络中传输的负载小于网络的传输能力,所以ATM取消了终端设备和端局节点、网络内部节点之间链路上的差错控制和流量控制,而将这些工作推给了网络边缘的终端设备完成,因此ATM信头的功能被大大简化,从而提高信头的处理速度,使信元的排队时延大大缩短。长度小而固定的信元的信息交换是在第二层完成的,而且协议简单,可以采用硬件来实现交换,使得交换速度加快,从而减小了交换节点内部缓冲器的容量,使信元的排队时延和时延抖动降低,有利于信息传送的时间透明性。因此,ATM能够很好的满足话音、动态图像等实时性业务的要求。
(3)采用透明的网络传输方式
ATM网络以语义透明和时间透明的传输方式工作。所谓语义透明是要求网络在传送信息时不产生错误,或者说端到端的错误率非常低,即不改变业务信息的语义。所谓时间透明是要求网络用最短的时间将信息从发源地送到目的地,即不改变业务信息的时间关系。
(4)具有统计复用功能
网络资源可以按需分配,提高了网络资源的利用率。在ATM方式下,网络具有多方连接的功能,其中包括支持广播(broadcast)型连接和多播(multicast)型连接的能力。
(5)兼容性好
ATM通过设置AAL层,对业务类型进行划分,通过AAL层的适配把不同电信业务转换成统一的ATM标准,实现使用同一个网络来承载各种应用业务的目的,再辅之必要的网络管理功能,信令处理与连接控制功能,可以设置多级优先级(如连接优先级和信元优先级等)管理功能,使ATM能够广泛适应各类业务的要求。
在ATM交换网络中,通常为两层结构,在核心交换层,大容量的骨干ATM交换机互相连接构成交换机之间以OC-12(622Mbit/s)或OC-48(2。4Gbit/S)的主干。在外围,ATM接入设备可提供给用户接口种类有:
(1)高速ATM接口(通常提供给拥护OC-3(155Mbit/s)或OC-12(622Mbit/S)的接入带宽,其网络接口为光纤SC接口,其接入数据的帧格式为ATM信元,在ATM接口上提供的服务类型为ATM PVC(permanent virtue circuit),在一个物理接口上提供多条PVC支持。)
(2)低速ATM接口(通常提供两种速率的接入,E3(34Mbit/s))和OC-12(622Mbit/s),其网络接口为G。703铜线接口,其接入数据的帧格式为ATM 信元,在ATM接口上提供的服务类型为ATM PVC,在一个物理接口上可提供多条 PVC支持。)
(3)帧中继接口(提供的接入速率为64Kbit/s到2Mbit/s,ATM上提供的帧中继接口最高可达50Mbit/s,其接口通常为G.703或V.35其接入数据为帧中继的分组,在ATM接入设备的帧中继接口上通过FRF。5或FRF。8,提供帧中继的PVC与ATM PVC的转换。在一个物理接口上可提供多条PVC支持。)
(4)电路仿真接口(提供从64kbit/s到2Mbit/s的接入速率,提供透明比特流的传输,若为2Mbit/s速率的接入,其接口通常为G。703 或V。35。若提供的是2Mbit/s或更低等速率时,接口通常为V。35。路由器可利用这种端口实现点对点的专线连接。)
(5)局域网接口(提供10Mbit/s或100Mbit/s的接入速率。其接口通常为RJ-45。在局域网接口上,通常可提供IP路由功能,即每一个以太网接口可配置IP地址且可提供路由功能)
ATM 技术的发展从一开始就被分为两个独立的领域。众多高速局域网在基于ATM 交换技术的基础之上构建其骨干网;在广域网领域,ATM 已经成为电信运营商的首选技术。
下面介绍ATM的三种接入方法
1. 第一种接入方法
就是提供连网技术,通过将所有客户连接在一个边缘交换机上,在运营商中央局终止 ATM。这种方法对企业同时具有如下的优点和缺点。
(1)简化接入网,客户端无需任何 ATM 相关配置;
(2)客户办公室不需要特殊服务设备,只需要配置物理层设备即可(光纤、铜线或无线设施);
(3)只有中央局内部和中央局之间才提供 ATM 质量保证,客户办公室之间不提供 ATM 质量保证,因此业务等级协议(SLA)变得更难实施;
(4)为了确保各种通信的服务质量(QoS),客户必须拥有多条链路与中央局连接(用于不同业务—FR、IP、局域网、语音等等);
(5)由于处理多种用户通信业务,可能会堵塞 ATM 边缘多路复用器和交换机。
2.第二种方法
就是在客户建筑物内安装 ATM CPE(客户端设备),为客户提供服务终端,它具有如下优点和缺点。
(1)通常,CPE比“物理”调制解调器贵;
(2)接入网络需要特定工程技术规则进行通信管理;
(3)客户办公室之间可采纳适用于各种通信业务和专门应用的“端到端”服务质量(QoS),从而使运营商能够提供 SLA 增值业务,以及网络端到端监控诊断;
(4)可以在客户建筑物中而非服务提供商的中央局进行多业务通信的聚集,因此,只需一条线路与客户相连接,同时在客户建筑物实施通信设计,从而边缘转换器可以将全部处理能力分配给转换单元,而非控制多个客户的多业务通信。
3.第三种方法
在客户建筑物内安装CLE(客户地点设备),用于提供本地 ATM 业务的 ATM NTU(A-NTU),同时也是运营其它 ATM 业务的交互 NTU(I-NTU)。随着发展继续深入, ATM 交互 NTU(网络终端装置)低成本的特性日益明显,它能够满足 ATM 服务提供商的特殊要求,并且在运营商网络端终止业务。它属于服务提供商,但是安装在客户建筑物内。在这方面,英国电信(BT)跨出了具体的第一步,英国电信邀请 RAD 数据通信公司加盟,确定 NTU 概念并开发专用 ATM 网络终端装置(NTU)。英国电信后来配置 ATM 网络终端装置(NTU),成为其 ATM 多业务平台不可分割的一部分。
英国电信的网络终端装置(NTU)方法很快得到欧洲和亚洲主要运营商的采纳和实施,包括法国电信、德国电信、KPN、日本电信、日本电报电话公共公司(NTT)、另外还有 Matav 和 Eircom。第三种解决方案之所以得到广泛采用,主要是因为越来越多的客户寻求服务质量(QoS)保证,但更为重要的前提是他们已经准备好承担 SLA 成本。
CLE能提供服务提供商必须的所有服务质量保证,此外,还提供其他功能特性,如业务配合和集中(ATM 语音、ATM 转换帧中继、ATM 以太网等),以及 SNMP 网络管理。它们作为运营商业务和用户网络之间的分界点,使服务提供商能够将他们的管理能力延伸到客户建筑物,履行全部服务质量职责,同时检查用户-通信过程的一致性。通过精心实施1.610 运营、管理和维护(OAM)支持,这些CLE 使运营商能够提供更好的服务,同时为客户提供有关如何更有效的使用 ATM 业务以及这些业务如何定价等方面的有用信息。有成本效益的服务能通过深入、强大的通信管理和控制得以实现。
自从第一套 CLE 投入使用,其他 NTU/CLE 根据市场要求得到开发。开始时,大多数客户都是使用高速率(E3/155M)的ATM 连接公司和政府机构。然而近年来,市场已经朝着新的方向发展:小型企业采用基于 ATM 的服务进行组网;非传统运营商和因特网服务提供商(ISP)得到发展,并要求拥有他们自己的解决方案;新技术(2.5G和3G移动技术要求额外带宽和完全不同的方法)。
面对令人目不暇接的众多网络新技术,建网时所进行的网络选型就显得非常重要,而投资巨大、涉及面广的广域骨干网建设更是需要慎之又慎。
目前,面对成熟的SDH和ATM技术,电信厂商建设广域骨干网时通常的作法是:第一、采用光纤作为传输介质,这是必然的选择了;第二、使用SDH技术连接光纤端接设备,形成一个距离范围可达到无限的SDH光纤网;第三、在SDH传输网上采用各种ATM交换设备,构建具备数据、话音、视频等多服务能力的ATM骨干网。
3G时代的到来对运营商是个巨大的挑战,由于3G发展的不确定性,所以建设的网络必须是高性价比的灵活网络。3G传输网的接入部分有两种截然不同的技术:传输和ATM,传统的网络结构将他们分成两个不同的网络层,虽然网络设计简单了,但网络复杂昂贵不灵活。为了满足需求,ECI提出了创新的概念:同一平台集成SDH和ATM,优化了网络,使网络更灵活经济,更具扩展性。
3G中的Node B和RNC通过Iub接口连接,Iub接口是复杂的协议族,是基于ATM上的媒介、信令、OAM等等,ATM能通过TDM链路传输,大部分Node B节点含有基于ATM IMA的部分2M或几个2M,而RNC节点往往是多个2M或STM-1。早期的3G标准定义Node B和RNC之间通过TDM电路连接,在ATM层,Node B和RNC通过ATM链路直接连接,没有ATM交换,提供以下功能:a.独立于传输层 b.通过ATM IMA机制把多个TDM链路定义成一个逻辑电路 c. ATM统计复用。3G标准版本4定义了ATM的交换和QoS的保证,ATM的交换有2个好处:RNC可以是STM-1接口,大大降低了RNC的成本;提高了带宽利用率。ATM交换机可以保证带宽分配,可以基于峰值和恒定速率的统计复用,可以基于用户的统计复用,从而提高了网络带宽的利用率。
3G传输网的构建可以采用两种方法:1. RNC节点的E1接口通过纯TDM的SDH网络和Node B节点相连接 2. RNC节点是STM-1接口,Node B 节点是E1接口,ATM交换机用于E1到STM-1的会聚,ATM交换机可以放在RNC节点处,也可以放置在传输网络中的其他位置。ATM交换机在3G传输网络中是必需的,但也是昂贵的,另外,安装ATM交换机不仅仅是增加ATM设备,另外还需要大量的PDH和SDH接口,Node B节点的典型配置会聚通道化的STM-1(52个E1)和本地Node B节点的20个E1。总的ATM E1数是72个,因此1个通道化的STM-1是不够的,需要ATM层的会聚,如果仅仅是TDM的会聚,需要另外一个STM-1,另外一个STM-1中仅仅有9个E1,浪费是明显的。而ATM交换机可以把72个 ATM E1 压缩到一个VC4中,ATM交换机需要一个STM-1接口和72个E1接口,同时SDH网络也需要增加一个STM-1接口和72个E1接口,显然是个昂贵的方案,并不适合于3G传输网的应用。
IMA是多个E1链路传送ATM的地层协议,多个物理链接配置成一个ATM链接,可以不影响业务上下电路,这是个很强大的功能,但IMA在硬件层面实现,因此相同IMA组的所有链接必须在同一接口卡上,但实际上很多情况很难把IMA组分配到同一接口卡上,而相同IMA组的所有E1又必须被相同的ASIC芯片处理。这种限制使网络规划几乎不可能,移动运营商如果把E1链接分配到IMA组,无法规划将来的扩容,如果先期没有留有扩容余量,将来的IMA扩容及其复杂并影响业务,如果留有大量余量,导致先期投资过大,有投资浪费的风险。 ECI 3G传输网络的解决方案 移动通信一直是ECI重要的战略市场,针对移动3G传输市场对ATM业务的需求,ECI专门提出了解决方案,在ECI的单个XDM平台上,集成了SDH和ATM功能,具有很高的性价比、灵活性和面向3G的可升级性。XDM是ECI公司专门为移动和城域网络设计的MSTP平台,支持各种TDM应用和纯光应用,还有一个核心特点是XDM的完全基于VC12的全交叉矩阵,可以保证任意E1之间无限制地交叉链接,很利于ATM的应用。
ECI的ATM卡:ATS卡,是和XDM的交叉矩阵相连,本身无物理接口,它实际上是ATM交换机,支持3种类型的ATM端口: 1.STM-1中的VC4或任意高阶虚容器的VC4
2.物理E1端口或任意接口中的E1通道 3.多E1的IMA组。在ATM层,任何端口之间的ATM业务可以无限制地任意交换。远方通过STM-1来52个E1,本地还有20个E1,采用外接ATM交换机的方式的话,ATM和SDH设备双方都要提供1个STM-1接口和72个E1接口,如果采用ATS方案的话,交叉矩阵把远方STM-1中的52个E1和本地20个E1交叉到ATS卡中,ATS卡把72个E1会聚到一个VC4中,交叉矩阵再把这个VC4交叉到STM-1端口。单个设备同时完成SDH和ATM的功能,显然更经济,更灵活。XDM的集成SDH/ATM的解决方案更紧凑,灵活,经济和易管理。将ATM和SDH集成在一起,大大简化了硬件设备,当采用SDH和ATM两种设备时,设备间需要电缆连接,采用集成技术,可以省掉连接电缆,ATS卡本身无物理接口,所以单卡可以支持高密度接口126个E1(支持84个IMA组)。而ATM交换机没有这么高的端口密度。集成方案只有一套管理系统,减少运营成本,只有一套硬件,设备占地面积少,功耗小,连接电缆少等等,大大减少了运营费用。 IMA组的规划是个复杂的工程,如果一开始仅考虑当前ATM E1的需求,那将来的扩容可能要改变电缆连接,这是不允许的,所以必须留出E1的端口用于将来的扩容,但将来扩容的不确定性是种风险。XDM中的ATS卡是理想的解决方案,不像传统的ATM交换机,ATS卡能把不同PDH卡上的不同E1会聚到一个IMA组中,在传统的ATM交换机方案中,必须预留一些ATM E1接口给将来扩容用,而对于ATS方案,将来有新的ATM E1扩容只需要连接到XDM的PDH E1接口上,即使不同PDH卡上的ATM E1,XDM也能将他们交叉到目的地。
XDM是一个随着成长而建设、付费的平台,而ATS仅仅是XDM的一块板卡,在网络上增加ATM应用仅仅是增加ATS卡而已,增加的费用很低,所以网络初期投资成本很低,并且将来扩容的费用也很低,当ATM业务变化时,无需考虑配置多大容量的ATM交换机,简单到只要考虑增加几块ATS板卡就可以了。
为了降低成本,3G网络必须和已有的2G网络共享网络资源。2G的TDM业务在标准的TDM链路中传输,XDM的完全低阶交叉矩阵适合于移动网络,提供了灵活方便的2G解决方案,在此同时,ATS卡把多个Node B节点的ATM业务会聚到IMA组中,3G的IMA组和2G的TDM业务共享于相同的通道化的STM-1链路中,通过网管可以实现两个网络的带宽分配。
XDM的ATS是创新化的设计,集成了SDH和ATM两种技术,针对3G传输网络,提供了强大并且经济的解决方案。两种技术的集成使网络的成本大大降低,并且使网络有巨大的灵活性,适合于网络发展的各种趋势,满足用户和容量的增加数量的增加。
XDM的ATS解决方案不仅仅是经济的网络解决方案,而且是一个完全可升级的解决方案,移动运营商今天不必投资在将来并不明朗的需求,同时需求增长来临的时候,现有的网络可以毫无限制地升级。
Ⅳ 电信的网管系统各层的作用
TMN是提供一个有组织的网络结构,以取得各种类型的运行系统回之间、运行系统与电信设答备之间的互连,是采用商定的具有标准协议和信息的接口进行管理信息交换的体系结构。
TMN的几个发展趋势包括:从网络管理向业务管理过渡、对异构系统进行综合管理、TMN实现技术的不断发展、电子传单(Electronic Bonding)逐步应用。
网元是由一个或多个机盘或机框组成, 能够独立完成一定的传输功能的合。如PDH设备、SDH-ADM、DACS、TEM、REG、PCM等等。你说的网管系统中的网元其实和这个差不多,简单理解就是网络中的元素,网络中的设备