Ⅰ 如何构建知识图谱
自己建吗可以下载图谱软件构建
http://www.cnblogs.com/R0b1n/p/5224065.html可以参考一下这个
SPSS: 大型统计分析软件,商用软件。具有完整的数据输入、编辑、统计分析、报表、图形绘制等功能。常用于多元统计分析、数据挖掘和数据可视化。
Bibexcel: 瑞典科学计量学家Persoon开发的科学计量学软件,用于科学研究免费软件。具有文献计量分析、引文分析、共引分析、耦合分析、聚类分析和数据可视化等功能。可用于分析ISI的SCI、SSCI和A&HCI文献数据库。
HistCite: Eugene Garfield等人于2001年开发的科学文献引文链接分析和可视化系统,免费软件。可对ISI的SCI、SSCI和SA&HCI等文献数据库的引文数据进行计量分析,生成文献、作者和期刊的引文矩阵和实时动态引文编年图。直观的反映文献之间的引用关系、主题的宗谱关系、作者历史传承关系、科学知识发展演进等。
CiteSpace: 陈超美博士开发的专门用于科学知识图谱绘制的免费软件。国内使用最多知识图谱绘制软件。可用于追踪研究领域热点和发展趋势,了解研究领域的研究前沿及演进关键路径,重要的文献、作者及机构。可用于对ISI、CSSCI和CNKI等多种文献数据库进行分析。
TDA: Thomson Data Analyzer(TDA)是Thomson集团基于VantagePoint开发文献分析工具。商用软件。具有去重、分段等数据预处理功能;可形成共现矩阵、因子矩阵等多种分析矩阵;可使用Pearson、Cosine等多种算法进行数据标准化;可进行知识图谱可视化展示。
Sci2 Tools: 印第安纳大学开发的用于研究科学结构的模块化工具可从时间、空间、主题、网络分析和可视化等多角度,分析个体、局部和整体水平的知识单元。
ColPalRed: Gradnada大学开发的共词单元文献分析软件。商用软件。结构分析,在主题网络中展现知识(词语及其关系);战略分析,通过中心度和密度,在主题网络中为主题定位;动态分析,分析主题网络演变,鉴定主题路径和分支。
Leydesdorff: 系类软件。阿姆斯特丹大学Leydesdorff开发的这对文献计量的小程序集合。处理共词分析、耦合分析、共引分析等知识单元体系。使用“层叠图”实现可视化知识的静态布局和动态变化。
Word Smith: 词频分析软件。可将文本中单词出现频率排序和找出单词的搭配词组。
NWB Tools: 印第安纳大学开发的对大规模知识网络进行建模、分析和可视化工具. 数据预处理;构建共引、共词、耦合等多种网络;可用多种方法进行网络分析;可进行可视化展示.
Ucinet NetDraw: Ucinet是社会网络分析工具。包括网络可视化工具Net Draw。用于处理多种关系数据,可通过节点属性对节点的颜色、形状和大小等进行设置。用于社交网络分析和网络可视化。
Pajek: 来自斯洛文尼亚的分析大型网络的社会网络分析免费软件。Pajek基于图论、网络分析和可视化技术,主要用于大型网络分解,网络关系展示,科研作者合作网络图谱的绘制。
VOSviewer: 荷兰莱顿大学开发的文献可视化分析工具。使用基于VOS聚类技术技术实现知识单元可视化工具。突出特点可视化能力强,适合于大规模样本数据。四种视图浏览:标签视图、密度视图、聚类视图和分散视图。
[4]陈悦, 刘则渊, 陈劲等. 科学知识图谱的发展历程[J]. 科学学研究, 2008, (03): 449-460.
[5]Shiffrin, R.M., and Katy Börner. Mapping Knowledge Domains[C]. Proc. Proceedings of the National Academy of Sciences of the United States of America pp. 5183-5185.
[6]Börner, K., Chen, C.和Boyack, K.W. Visualizing knowledge domains[J]. Annual review of information science and technology, 2003, 37, (1): 179-255.
[7]CM, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57, (3): 359-377.
[8]陈悦和刘则渊. 悄然兴起的科学知识图谱[J]. 科学学研究, 2005, (02): 149-154.
[9]邱均平. 信息计量学[M]. (武汉大学出版社, 2007. 2007).
[10]沙勇忠和牛春华. 信息分析[M]. (科学出版社, 2009. 2009).
[11]塞沃尔, 建军和煦. 链接分析: 信息科学的研究方法[M]. (东南大学出版社, 2009. 2009).
[12]Egghe, L.和Rousseau, R. Introction to informetrics: Quantitative methods in library, documentation and information science[J]. 1990
[13]韩家炜, 坎伯, 裴健等. 数据挖掘: 概念与技术[M]. (机械工业出版社, 2007. 2007).
[14]Wasserman, S. Social network analysis: Methods and applications[M]. (Cambridge university press, 1994. 1994).
[15]Persson, O., R. Danell, J. Wiborg Schneider. How to use Bibexcel for various types of bibliometric analysis[C]. Proc. International Society for Scientometrics and Informetrics., Leuven, Belgium2009 pp. 9–24.
[16]Yang, Y., Akers, L., Klose, T.等. Text mining and visualization tools–impressions of emerging capabilities[J]. World Patent Information, 2008, 30, (4): 280-293.
[17]Börner, K., Huang, W., Linnemeier, M.等. Rete-netzwerk-red: analyzing and visualizing scholarly networks using the Network Workbench Tool[J]. Scientometrics, 2010, 83, (3): 863-876.
[18]廖胜姣. 科学知识图谱绘制工具:SPSS和TDA的比较研究[J]. 图书馆学研究, 2011, (05): 46-49.
[19]Scott, M. WordSmith tools[M]. (Oxford: Oxford University Press, 1996. 1996).
[20]Batagelj, V.和Mrvar, A. Pajek - Program for Large Network Analysis[M]. (1998. 1998).
[21]Borgatti, S.P., Everett, M.G.和Freeman, L.C. Ucinet for Windows: Software for social network analysis[J]. 2002
[22]Van Eck, N.J.和Waltman, L. VOSviewer: A computer program for bibliometric mapping[J]. 2009
Ⅱ 知识网络图怎么做
知识网络图的绘制步骤:
一、 确认中心知识内容
通过知识历程图,我们可以对企业内部存在的知识进行细致的梳理,而确认中心知识内容就是将这些知识点进行分类,主要是要掌握知识的最高层次分类。比如,一家从事软件开发的科技公司,主要的业务领域包括产品的研发,软件的销售以及售后的技术支持,而针对这样的公司,其中心知识内容可能包括研发中心,销售中心,客户中心,技术人员中心,财务中心等。这样分类的目的就是对于企业的知识有个明确的分类,以便看出各类知识之间的联系。同样,分类的时候需要结合公司实际的运作情况,是以产品为中心,还是以客户为中心。
二、分解卫星知识内容
围绕在中心知识内容周围的的知识就是卫星知识,分解卫星知识内容,就是从第一步中的中心知识入手,对其进行细分并整理为第二层分类。对于这个层次的分类需要注意两点:卫星知识的分类应该从知识内容入手,而不是单单局限于部门内;卫星知识的分类范围不宜过大,并且要有一定的逻辑顺序。
三、为每个卫星知识配备负责人
最后一个步骤就是对已经确认的知识内容指派一个负责人,即为每个卫星找一个主人。负责人的主要工作就是确保知识内容的质量,整理知识发布者的信息,以便人们在访问的时候知道可以和“谁”就这类问题进行讨论或者寻求帮助。