导航:首页 > 编程大全 > 神经网络的训练参数

神经网络的训练参数

发布时间:2024-08-13 05:25:16

Ⅰ 神经网络参数如何确定

神经网络各个网络参数设定原则:

①、网络节点  网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点,即构成一个7-5-1 BP神经网络模型。在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。

②、初始权值的确定  初始权值是不应完全相等的一组值。已经证明,即便确定  存在一组互不相等的使系统误差更小的权值,如果所设Wji的的初始值彼此相等,它们将在学习过程中始终保持相等。故而,在程序中,我们设计了一个随机发生器程序,产生一组一0.5~+0.5的随机数,作为网络的初始权值。

③、最小训练速率  在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。该值一般取0.9。

④、动态参数  动态系数的选择也是经验性的,一般取0.6 ~0.8。

⑤、允许误差  一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。

⑥、迭代次数  一般取1000次。由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。

⑦、Sigmoid参数 该参数调整神经元激励函数形式,一般取0.9~1.0之间。

⑧、数据转换。在DPS系统中,允许对输入层各个节点的数据进行转换,提供转换的方法有取对数、平方根转换和数据标准化转换。

(1)神经网络的训练参数扩展阅读:

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:

1.生物原型

从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

2.建立模型

根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

3.算法

在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

Ⅱ BP神经网络的Training Parameters中各个参数都是什么意思啊

max_fail 最大失败步数,如设置为100,则训练到100步还没成功也会停止训练
mem_rec
min_grad 最小梯度,梯度下降法中出现回,设答置一个值之后,如果训练下降梯度不达此值训练也只能停止
mu 参数μ
mu_dec
mu_inc
mu_max
show 显示步数,如果设为50,则运行后会每隔50步显示一下运行结果
time 训练时间限制,同max_fail,min_grad 作用一样

Ⅲ 卷积神经网络参数解析

(1)现象:

        (1-1)一次性将batch数量个样本feed神经网络,进行前向传播;然后再进行权重的调整,这样的一整个过程叫做一个回合(epoch),也即一个batch大小样本的全过程就是一次迭代。

        (1-2)将训练数据分块,做成批(batch training)训练可以将多个训练数据元的loss function求和,使用梯度下降法,最小化 求和后的loss function ,进而对神经网络的参数进行优化更新

(2)一次迭代:包括前向传播计算输出向量、输出向量与label的loss计算和后向传播求loss对权重向量 w 导数(梯度下降法计算),并实现权重向量 w 的更新。

(3)优点:

        (a)对梯度向量(代价函数对权值向量 w 的导数)的精确估计,保证以最快的速度下降到局部极小值的收敛性;一个batch一次梯度下降;

        (b)学习过程的并行运行;

        (c)更加接近随机梯度下降的算法效果;

        (d)Batch Normalization 使用同批次的统计平均和偏差对数据进行正则化,加速训练,有时可提高正确率 [7]

(4)现实工程问题:存在计算机存储问题,一次加载的batch大小受到内存的影响;

(5)batch参数选择:

        (5-1)从收敛速度的角度来说,小批量的样本集合是最优的,也就是我们所说的mini-batch,这时的batch size往往从几十到几百不等,但一般不会超过几千

        (5-2)GPU对2的幂次的batch可以发挥更佳的性能,因此设置成16、32、64、128...时往往要比设置为整10、整100的倍数时表现更优

    (6)4种加速批梯度下降的方法 [8] :

        (6-1)使用动量-使用权重的 速度 而非 位置 来改变权重。

        (6-2)针对不同权重参数使用不同学习率。

        (6-3)RMSProp-这是Prop 的均方根 ( Mean Square ) 改进形式,Rprop 仅仅使用梯度的符号,RMSProp 是其针对 Mini-batches 的平均化版本

        (6-4)利用曲率信息的最优化方法。

(1)定义:运用梯度下降算法优化loss成本函数时,权重向量的更新规则中,在梯度项前会乘以一个系数,这个系数就叫学习速率η

(2)效果:

        (2-1)学习率η越小,每次迭代权值向量变化小,学习速度慢,轨迹在权值空间中较光滑,收敛慢;

        (2-2)学习率η越大,每次迭代权值向量变化大,学习速度快,但是有可能使变化处于震荡中,无法收敛;

    (3)处理方法:

        (3-1)既要加快学习速度又要保持稳定的方法修改delta法则,即添加动量项。

    (4)选择经验:

        (4-1)基于经验的手动调整。 通过尝试不同的固定学习率,如0.1, 0.01, 0.001等,观察迭代次数和loss的变化关系,找到loss下降最快关系对应的学习率。

        (4-2)基于策略的调整。

                (4-2-1)fixed 、exponential、polynomial

                (4-2-2)自适应动态调整。adadelta、adagrad、ftrl、momentum、rmsprop、sgd

    (5)学习率η的调整:学习速率在学习过程中实现自适应调整(一般是衰减)

        (5-1)非自适应学习速率可能不是最佳的。

        (5-2)动量是一种自适应学习速率方法的参数,允许沿浅方向使用较高的速度,同时沿陡峭方向降低速度前进

        (5-3)降低学习速率是必要的,因为在训练过程中,较高学习速率很可能陷入局部最小值。

参考文献:

[1]  Simon Haykin. 神经网络与机器学习[M]. 机械工业出版社, 2011.

[2]   训练神经网络时如何确定batch的大小?

[3]   学习笔记:Batch Size 对深度神经网络预言能力的影响  

[4]   机器学习算法中如何选取超参数:学习速率、正则项系数、minibatch size.  http://blog.csdn.net/u012162613/article/details/44265967

[5]   深度学习如何设置学习率 . http://blog.csdn.net/mao_feng/article/details/52902666

[6]   调整学习速率以优化神经网络训练. https://zhuanlan.hu.com/p/28893986

[7]   机器学习中用来防止过拟合的方法有哪些?

[8]   Neural Networks for Machine Learning by Geoffrey Hinton .

[9]   如何确定卷积神经网络的卷积核大小、卷积层数、每层map个数

[10]   卷积神经网络的卷积核大小、卷积层数、每层map个数都是如何确定下来的呢?

Ⅳ MATLAB中如何获取BP神经网络训练后的参数

sim命令将运行指定的模型。模型执行时使用传递给sim命令的数据,这些数据包括在options结构中设定的参数值。a=sim(net,[ ])中,net是你的训练网络,后面的中括号是你要训练的结构参数!

阅读全文

与神经网络的训练参数相关的资料

热点内容
intsum编程是什么意思 浏览:782
没有大数据如何贷款 浏览:29
衣服补丁是哪个文件 浏览:234
docker映射路径文件 浏览:280
多文件格式支持多级权限管控 浏览:907
什么网站能翻译中文 浏览:677
查看win10数字激活 浏览:324
车商悦怎么下载app 浏览:797
有人微信骚扰我老婆 浏览:47
dxe文件数据如何导入cad 浏览:988
vb字体标准还原代码 浏览:394
乐高机器人编程属于什么类 浏览:102
iphone4s固件怎么区分 浏览:953
win10用不了钉钉 浏览:202
xp系统硬盘安装win10系统安装教程 浏览:616
万象会员资料保存哪个文件 浏览:800
json文件的读取数据 浏览:463
js字符串中加法 浏览:685
儿童体重指数安卓 浏览:738
dnf86版本加暴击率的装备 浏览:239

友情链接