导航:首页 > 编程大全 > 数据库增量数据捕获

数据库增量数据捕获

发布时间:2024-07-15 01:04:33

Ⅰ 求教如何获取数据库增量数据

获取数据库增量数据的几种方式:
a.触发器:在要抽取的表上建立需要的触发器,一般要建立插入、修改、删除三个触发器,每当源表中的数据发生变化,就被相应的触发器将变化的数据写入一个临时表,抽取线程从临时表中抽取数据,临时表中抽取过的数据被标记或删除。触发器方式的优点是数据抽取的性能较高,缺点是要求业务表建立触发器,对业务系统有一定的影响。

b.时间戳:它是一种基于快照比较的变化数据捕获方式,在源表上增加一个时间戳字段,系统中更新修改表数据的时候,同时修改时间戳字段的值。当进行数据抽取时,通过比较系统时间与时间戳字段的值来决定抽取哪些数据。有的数据库的时间戳支持自动更新,即表的其它字段的数据发生改变时,自动更新时间戳字段的值。有的数据库不支持时间戳的自动更新,这就要求业务系统在更新业务数据时,手工更新时间戳字段。同触发器方式一样,时间戳方式的性能也比较好,数据抽取相对清楚简单,但对业务系统也有很大的倾入性(加入额外的时间戳字段),特别是对不支持时间戳的自动更新的数据库,还要求业务系统进行额外的更新时间戳操作。

c.全表比对:典型的全表比对的方式是采用MD5校验码。ETL工具事先为要抽取的表建立一个结构类似的MD5临时表,该临时表记录源表主键以及根据所有字段的数据计算出来的MD5校验码。每次进行数据抽取时,对源表和MD5临时表进行MD5校验码的比对,从而决定源表中的数据是新增、修改还是删除,同时更新MD5校验码。

d.日志对比:通过分析数据库自身的日志来判断变化的数据。

Ⅱ ETL 数据抽取 如何实现增量抽取

ETL中的数据增量抽取机制
(

增量抽取是数据仓库ETL(extraction,transformation,loading,数据的抽取、转换和装载)实施过程中需要重点考虑的问 题。在ETL过程中,增量更新的效率和可行性是决定ETL实施成败的关键问题之一,ETL中的增量更新机制比较复杂,采用何种机制往往取决于源数据系统的 类型以及对增量更新性能的要求。
1 ETL概述
ETL包括数据的抽取、转换、加载。①数据抽取:从源数据源系统抽取目的数据源系统需要的数据:②数据转换:将从源数据源获取的数据按照业务需求,转换成目的数据源要求的形式,并对错误、不一致的数据进行清洗和加工;③数据加载:将转换后的数据装载到目的数据源。
ETL作为构建数据仓库的一个环节,负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数 据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。ETL原来主要用户构建数据仓库和商业智能项目,现在也越来越多地应用于一般信息系统数据的迁 移、交换和同步。
在ETL的3个环节中,数据抽取直接面对各种分散、异构的数据源,如何保证稳定高效的从这些数据源中提取正确的数据,是ETL设计和实施过程中需要考虑的关键问题之一。
在集成端进行数据的初始化时,一般需要将数据源端的全部数据装载进来,这时需要进行全量抽取。全量抽取类似于数据迁移或数据复制,它将数据源中的表或视图 的数据全部从数据库中抽取出来,再进行后续的转换和加载操作。全量抽取可以使用数据复制、导入或者备份的方式完成,实现机制比较简单。全量抽取完成后,后 续的抽取操作只需抽取自上次抽取以来表中新增或修改的数据,这就是增量抽取。
在数据库仓库中,无论是全量抽取还是增量抽取,抽取工作一般由数据仓库工具来完成,如oracle的OWB,Sql Server的Integration Services以及专业的ETL商业产品Informatica PowvrCenter等。如果企业的预算有限,也可以考虑使用开源项目Pentaho。这些工具都有一个特点,就是本身并没有实现特定的增量抽取机制, 它们完成全量抽取后,用户可以通过定制计划任务的方式,实现按一定的周期从源系统中抽取当前周期内产生的增量数据,但至于这些增量数据如何产生,工具并没 有提供自动生成增量数据的功能。所以,ETL过程中增量数据的产生机制是一个需要用户重点研究和选择的问题。
2 增量抽取机制
要实现增量抽取,关键是如何准确快速的捕获变化的数据。优秀的增量抽取机制要求ETL能够将业务系统中的变化数据按一定的频率准确地捕获到,同时不能对业 务系统造成太大的压力,影响现有业务。相对全量抽取而言,增量抽取的设计更复杂,有一种将全量抽取过程自动转换为增量抽取过程的ETL设计思路,前提是必 须捕获变化的数据,增量数据抽取中常用的捕获变化数据的方法有以下几种:
2.1 触发器方式
触发器方式是普遍采取的一种增量抽取机制。该方式是根据抽取要求,在要被抽取的源表上建立插入、修改、删除3个触发器,每当源表中的数据发生变化,就被相 应的触发器将变化的数据写入一个增量日志表,ETL的增量抽取则是从增量日志表中而不是直接在源表中抽取数据,同时增量日志表中抽取过的数据要及时被标记 或删除。
为了简单起见,增量日志表一般不存储增量数据的所有字段信息,而只是存储源表名称、更新的关键字值和更新操作类型(insert、update或 delete),ETL增量抽取进程首先根据源表名称和更新的关键字值,从源表中提取对应的完整记录,再根据更新操作类型,对目标表进行相应的处理。
例如,对于源表为Oracle类型的数据库,采用触发器方式进行增量数据捕获的过程如下:
(1)创建增量日志表DML LOG:
create table DML_LOG(
ID NUMBER primary key,--自增主键
TABLE_NAME VARCHAR2(200),--源表名称
RECORD_ID NUMBER,--源表增量记录的主键值
DML_TYPE CHAR(1),--增量类型,I表示新增;U表示更新;D表示删除
EXECUTE DATE DATE --发生时间
);
(2)为DML_LOG创建一个序列SEQ_DML_LOG,以便触发器写增量日志表时生成ID值。
(3)针对要监听的每一张表,创建一个触发器,例如对表Test创建触发器如下:
Create or replace trigger T BEFORE INSERT OR UPDATE OR DELETE ON T for each row
declare I_dml_type varchar2(1);
begin
if INSERTING then l_dml type:=’I’;
elsif UPDATING then I_dml_type:=’U’;
elsif DELETING then l_dml_type:=’D’;
end if;
if DELETING then
insert into DML_LOG(ID,TABLE_NAME,RECORD_ID,EXECUTE_DATE,DML_TYPE)
values(seq_dml_log.nextval,’Test’,:old.ID,sysdate,l_dml_type);
else
insert into DML_LOG(ID,TABLE_NAME,RECORD_ID,EXECUTE_DATE,DML_TYPE)
values(seq_dml_log.nextval,’Test’,:new.ID,sysdate,l_dml_type);
end if;
end;
这样,对表T的所有DML操作就记录在增量日志表DML_LOG中,注意增量日志表中并没有完全记录增量数据本身,只是记录了增量数据的来源。进行增量ETL时,只需要根据增量日志表中的记录情况,反查源表得到真正的增量数据。
2.2 时间戳方式
时间戳方式是指增量抽取时,抽取进程通过比较系统时间与抽取源表的时间戳字段的值来决定抽取哪些数据。这种方式需要在源表上增加一个时间戳字段,系统中更新修改表数据的时候,同时修改时间戳字段的值。
有的数据库(例如Sql Server)的时间戳支持自动更新,即表的其它字段的数据发生改变时,时间戳字段的值会被自动更新为记录改变的时刻。在这种情况下,进行ETL实施时就 只需要在源表加上时间戳字段就可以了。对于不支持时间戳自动更新的数据库,这就要求业务系统在更新业务数据时,通过编程的方式手工更新时间戳字段。
使用时间戳方式可以正常捕获源表的插入和更新操作,但对于删除操作则无能为力,需要结合其它机制才能完成。
2.3 全表删除插入方式
全表删除插入方式是指每次抽取前先删除目标表数据,抽取时全新加载数据。该方式实际上将增量抽取等同于全量抽取。对于数据量不大,全量抽取的时间代价小于执行增量抽取的算法和条件代价时,可以采用该方式。
2.4 全表比对方式
全表比对即在增量抽取时,ETL进程逐条比较源表和目标表的记录,将新增和修改的记录读取出来。
优化之后的全部比对方式是采用MD5校验码,需要事先为要抽取的表建立一个结构类似的MD5临时表,该临时表记录源表的主键值以及根据源表所有字段的数据 计算出来的MD5校验码,每次进行数据抽取时,对源表和MD5临时表进行MD5校验码的比对,如有不同,进行update操作:如目标表没有存在该主键 值,表示该记录还没有,则进行insert操作。然后,还需要对在源表中已不存在而目标表仍保留的主键值,执行delete操作。
2.5 日志表方式
对于建立了业务系统的生产数据库,可以在数据库中创建业务日志表,当特定需要监控的业务数据发生变化时,由相应的业务系统程序模块来更新维护日志表内容。增量抽取时,通过读日志表数据决定加载哪些数据及如何加载。日志表的维护需要由业务系统程序用代码来完成。
2.6 系统日志分析方式
该方式通过分析数据库自身的日志来判断变化的数据。关系犁数据库系统都会将所有的DML操作存储在日志文件中,以实现数据库的备份和还原功能。ETL增量 抽取进程通过对数据库的日志进行分析,提取对相关源表在特定时间后发生的DML操作信息,就可以得知自上次抽取时刻以来该表的数据变化情况,从而指导增量 抽取动作。
有些数据库系统提供了访问日志的专用的程序包(例如Oracle的LogMiner),使数据库日志的分析工作得到大大简化。
2.7 特定数据库的方式
针对特有数据库系统的增量抽取方式:
2.7.1 Oracle改变数据捕获(changed data capture,CDC)方式
OracleCDC特性是在Oraele9i数据库中引入的。CDC能够帮助识别从上次抽取之后发生变化的数据。利用CDC,在对源表进行 insert、update或delete等操作的同时就可以提取数据,并且变化的数据被保存在数据库的变化表中。这样就可以捕获发生变化的数据,然后利 用数据库视图以一种可控的方式提供给ETL抽取进程,作为增量抽取的依据。
CDC方式对源表数据变化情况的捕获有两种方式:同步CDC和异步CDC。同步CDC使用源数据库触发器来捕获变更的数据。这种方式是实时的,没有任何延 迟。当DML操作提交后,变更表中就产生了变更数据。异步CDC使用数据库重做日志(redolog)文件,在源数据库发生变更以后,才进行数据捕获。
2.7.2 Oracle闪回查询方式
Oracle9i以上版本的数据库系统提供了闪回查询机制,允许用户查询过去某个时刻的数据库状态。这样,抽取进程可以将源数据库的当前状态和上次抽取时刻的状态进行对比,快速得出源表数据记录的变化情况。
3 比较和分析
可见,ETL在进行增量抽取操作时,有以上各种机制可以选择。现从兼容性、完备性、性能和侵入性4个方面对这些机制的优劣进行比较分析。
兼容性
数据抽取需要面对的源系统,并不一定都是关系型数据库系统。某个ETL过程需要从若干年前的遗留系统中抽取Excel或者CSV文本数据的情形是经常发牛 的。这时,所有基于关系型数据库产品的增量机制都无法工作,时间戳方式和全表比对方式可能有一定的利用价值,在最坏的情况下,只有放弃增量抽取的思路,转 而采用全表删除插入方式。
完备性
完备性方面,时间戳方式不能捕获delete操作,需要结合其它方式一起使用。
性能
增量抽取的性能因素表现在两个方面,一是抽取进程本身的性能,二是对源系统性能的负面影响。触发器方式、日志表方式以及系统日志分析方式由于不需要在抽取 过程中执行比对步骤,所以增量抽取的性能较佳。全表比对方式需要经过复杂的比对过程才能识别出更改的记录,抽取性能最差。在对源系统的性能影响方面,触发 器方式由于是直接在源系统业务表上建立触发器,同时写临时表,对于频繁操作的业务系统可能会有一定的性能损失,尤其是当业务表上执行批量操作时,行级触发 器将会对性能产生严重的影响;同步CDC方式内部采用触发器的方式实现,也同样存在性能影响的问题;全表比对方式和日志表方式对数据源系统数据库的性能没 有任何影响,只是它们需要业务系统进行额外的运算和数据库操作,会有少许的时间损耗;时间戳方式、系统日志分析方式以及基于系统日志分析的方式(异步 CDC和闪回查询)对数据库性能的影响也是非常小的。
侵入性
对数据源系统的侵入性是指业务系统是否要为实现增量抽取机制做功能修改和额外操作,在这一点上,时间戳方式值得特别关注。该方式除了要修改数据源系统表结 构外,对于不支持时间戳字段自动更新的关系型数据库产品,还必须要修改业务系统的功能,让它在源表t执行每次操作时都要显式的更新表的时间戳字段,这在 ETL实施过程中必须得到数据源系统高度的配合才能达到,并且在多数情况下这种要求在数据源系统看来是比较“过分”的,这也是时间戳方式无法得到广泛运用 的主要原因。另外,触发器方式需要在源表上建立触发器,这种在某些场合中也遭到拒绝。还有一些需要建立临时表的方式,例如全表比对和日志表方式。可能因为 开放给ETL进程的数据库权限的限制而无法实施。同样的情况也可能发生在基于系统日志分析的方式上,因为大多数的数据库产品只允许特定组的用户甚至只有 DBA才能执行日志分析。闪回杏询在侵入性方面的影响是最小的。
综述:
通过对各种增量抽取机制的对比分析,我们发现,没有一种机制具有绝对的优势,不同机制在各种因素的表现大体上都是相对平衡的。兼容性较差的机制,像CDC 和闪回查询机制,由于充分利用了数据源系统DBMS的特性,相对来说具有较好的整体优势;最容易实现以及兼容性最佳的全表删除插入机制,则是以牺牲抽取性 能为代价的;系统日志分析方式对源业务系统的功能无需作任何改变,对源系统表也无需建立触发器,而抽取性能也不错,但有可能需要源系统开放DBA权限给 ETL抽取进程,并且自行分析日志系统难度较高,不同数据库系统的日志格式不一致,这就在一定程度上限制了它的使用范围。所以,ETL实施过程中究竞选择 哪种增量抽取机制,要根据实际的数据源系统环境进行决策,需要综合考虑源系统数据库的类型、抽取的数据量(决定对性能要求的苛刻程度)、对源业务系统和数 据库的控制能力以及实现难度等各种因素,甚至结合各种不同的增量机制以针对环境不同的数据源系统进行ETL实施。
4 结束语
为了实现数据仓库数据的高效更新,增量抽取是ETL数据抽取过程中非常重要的一环,其实现机制直接决定了ETL的整体实施效果。我们通过对几种常见的增量 抽取机制进行了对比,总结了各种机制的特性并分析了它们的优劣。各种增量抽取机制都有它有存在的价值和固有的限制条件,在ETL的设计和实施工作过程中, 只能依据项目的实际环境进行综合考虑,甚至需要对可采用的多种机制进行实际的测试,才能确定一个最优的增量抽取方法。

Ⅲ cdc仓库是什么意思

cdc仓库:中央配送中心仓库。

CDC是指从源数据库捕获到数据和数据结构(也称为模式)的增量变更,近乎实时地将这些变更,传播到其他数据库或应用程序之处。

通过这种方式,CDC能够向数据仓库提供高效、低延迟的数据传输,以便信息被及时转换并交付给专供分析的应用程序。

在数据不断变化,且无法中断与在线数据库连接的情况下,对于各种时间敏感(time-sensitive)类信息的复制,往往也是云端迁移的重要组成部分。与批量复制相比,变更数据的捕获通常具有如下三项基本优势:

CDC通过仅发送增量的变更,来降低通过网络传输数据的成本。CDC可以帮助用户根据最新的数据做出更快、更准确的决策。例如,CDC会将事务直接传输到专供分析的应用上。CDC最大限度地减少了对于生产环境网络流量的干扰。

仓库由贮存物品的库房、运输传送设施(如吊车、电梯、滑梯等)、出入库房的输送管道和设备以及消防设施、管理用房等组成。是保管、储存物品的建筑物和场所的总称。

仓库按所贮存物品的形态可分为贮存固体物品的、液体物品的、气体物品的和粉状物品的仓库;按贮存物品的性质可分为贮存原材料的、半成品的和成品的仓库;按建筑形式可分为单层仓库、多层仓库、圆筒形仓库。

批发仓库主要是用于储存从采购供应库场调进或在当地收购的商品,这一类仓库一般贴近商品销售市场,规模同采购供应仓库相比一般要小一些,它既从事批发供货,也从事拆零供货业务。

采购供应仓库主要用于集中储存从生产部门收购的和供国际间进出口的商品,一般这一类的仓库库场设在商品生产比较集中的大、中城市,或商品运输枢纽的所在地。

Ⅳ windows服务器增量备份怎样做

Windows 2000系统中的5个备份类型:普通 副本 差异 增量和每日
普通 就是 备份所有你指回定备份的文件,也就是完全答备份
副本 就是 跟完全备份相似,但不会覆盖你上次备份的文件
差异 就是 也是完全备份,并且不覆盖上次备份的文件,跟副本类似,只是在还原的时候不同
增量 就是 只备份与上次备份时不同的文件
每日 就是 每天备份一次

Ⅳ 数据抽取的数据源采用关系数据库

实际应用中,数据源较多采用的是关系数据库。从数据库中抽取数据一般有以下几种方式。 增量抽取指抽取自上次抽取以来数据库中要抽取的表中新增、修改、删除的数据。在ETL使用过程中。增量抽取较全量抽取应用更广。如何捕获变化的数据是增量抽取的关键。对捕获方法一般有两点要求:准确性,能够将业务系统中的变化数据准确地捕获到;性能,尽量减少对业务系统造成太大的压力,影响现有业务。目前增量数据抽取中常用的捕获变化数据的方法有:
a.触发器:在要抽取的表上建立需要的触发器,一般要建立插入、修改、删除三个触发器,每当源表中的数据发生变化,就被相应的触发器将变化的数据写入一个临时表,抽取线程从临时表中抽取数据。触发器方式的优点是数据抽取的性能较高,缺点是要求在业务数据库中建立触发器,对业务系统有一定的性能影响。
b.时间戳:它是一种基于递增数据比较的增量数据捕获方式,在源表上增加一个时间戳字段,系统中更新修改表数据的时候,同时修改时间戳字段的值。当进行数据抽取时,通过比较系统时间与时间戳字段的值来决定抽取哪些数据。有的数据库的时间戳支持自动更新,即表的其它字段的数据发生改变时,自动更新时间戳字段的值。有的数据库不支持时间戳的自动更新,这就要求业务系统在更新业务数据时,手工更新时间戳字段。同触发器方式一样,时间戳方式的性能也比较好,数据抽取相对清楚简单,但对业务系统也有很大的倾入性(加入额外的时间戳字段),特别是对不支持时间戳的自动更新的数据库,还要求业务系统进行额外的更新时间戳操作。另外,无法捕获对时间戳以前数据的delete和update操作,在数据准确性上受到了一定的限制。
c.全表比对:典型的全表比对的方式是采用MD5校验码。ETL工具事先为要抽取的表建立一个结构类似的MD5临时表,该临时表记录源表主键以及根据所有字段的数据计算出来的MD5校验码。每次进行数据抽取时,对源表和MD5临时表进行MD5校验码的比对,从而决定源表中的数据是新增、修改还是删除,同时更新MD5校验码。MD5方式的优点是对源系统的倾入性较小(仅需要建立一个MD5临时表),但缺点也是显而易见的,与触发器和时间戳方式中的主动通知不同,MD5方式是被动的进行全表数据的比对,性能较差。当表中没有主键或唯一列且含有重复记录时,MD5方式的准确性较差。
d.日志对比:通过分析数据库自身的日志来判断变化的数据。Oracle的改变数据捕获(CDC,Changed Data Capture)技术是这方面的代表。CDC 特性是在Oracle9i数据库中引入的。CDC能够帮助你识别从上次抽取之后发生变化的数据。利用CDC,在对源表进行insert、update或 delete等操作的同时就可以提取数据,并且变化的数据被保存在数据库的变化表中。这样就可以捕获发生变化的数据,然后利用数据库视图以一种可控的方式提供给目标系统。CDC体系结构基于发布者/订阅者模型。发布者捕捉变化数据并提供给订阅者。订阅者使用从发布者那里获得的变化数据。通常,CDC系统拥有一个发布者和多个订阅者。发布者首先需要识别捕获变化数据所需的源表。然后,它捕捉变化的数据并将其保存在特别创建的变化表中。它还使订阅者能够控制对变化数据的访问。订阅者需要清楚自己感兴趣的是哪些变化数据。一个订阅者可能不会对发布者发布的所有数据都感兴趣。订阅者需要创建一个订阅者视图来访问经发布者授权可以访问的变化数据。CDC分为同步模式和异步模式,同步模式实时的捕获变化数据并存储到变化表中,发布者与订阅都位于同一数据库中。异步模式则是基于Oracle的流复制技术。

Ⅵ odi实时数据同步可以采用哪些改造路线

ODI和OWB

ODI和OWB是互为补充的,ODI有四个地方是对OWB的很好的补充:

  1. 对于需要异构数据支持:当数据源或者目的不是Oracle数据库,ODI能够生成针对那个数据源的native的SQL操纵语句。

  2. 2. 对于需要实时数据集成的环境:ODI能够检测事件,一个事件可以触发ODI的一个接口流程。从而完成近实时的数据集成。下图是ODI提供的一些检测事件的工具,可以用在package里(ODI workflow的代名词)如OdiFileWait是等待文件到达,OdiSleep类似于许多系统里的Sleep等待轮询,OdiWaitForLogData则可以用于捕获增量数据的捕获的事件。这里的组件都是实现实时数据集成的关键部分。

  3. 3. 在数据抽取集成过程中需要和SOA集成,ODI本身提供了call web service的机制,并且ODI的接口也可以暴露为webService,从而可以和SOA环境进行交互。

  4. 4. 一致的CDC(Change Data Capture)支持,不同的数据源(Oracle,DB2等)对于变化数据获取都提供了不一样的技术框架,ODI把这些不同的技术框架屏蔽了,以一个统一的接口方式提供统一的CDC的设置框架,并提供订阅者的功能。

而OWB相比于ODI也有自己的很多特点:

  1. 丰富的Oracle数据运算符,能够提供Oracle数据库之间的高速转换抽取。

  2. 2. 从11g开始,OWB会作为Oracle的标准选件来提供,OWB本身会通过Oracle数据库的安装盘来安装,和所有的其他Oracle选项一样,都会和数据库核心紧密集成。

  3. 3. 数据质量管理:OWB的data profiling是一个相当强的数据质量管理工具,原理和流程是 数据采样-》分析采用数据的错误和规则-》生成纠正采样数据的mapping流程-》验证流程-》把流程应用到所有的数据上的循环。

小结

OWB本身除了运行需要较多的资源之外,本身是一个设计得相当好的工具(身边一些用过的人都评价还是很不错呀!),对于Oracle数据之间的抽取转换的功能完全不是任何别的工具可以比的,当然OWB的主要不足都体现在ODI里了,所以,OWB和ODI是完全互相补充的工具,如果是要同时在建设一个数据中心的项目里使用这两个工具的话,可以使用ODI来完成从异构数据源到staging Oracle数据的生成,或者用ODI完成需要实时数据同步的工作,而OWB可以用于从staging Oracle数据到Oracle数据仓库的Oracle数据源之间的工作,这样应该是最完美的设计。当然单独用OWB或ODI其实都可以完成这些工作,只不过这两个工具合并起来用,应该是一个大型数据仓库项目的非常好的方式。

Ⅶ 什么是CDM

CDM(Cash Deposit Machine)的缩写,意思是现金存款机。可办理查询余额和存款等业务。

1、客户可持卡到自动存取款机上,按机器界面提示进行相关业务操作。
2、退卡后30秒内不取卡的话会被吞卡;退卡后,若还要办理自助业务,应先把卡取出,再按正常步骤进行操作,若直接把卡推入,则会被吞卡。
3、在自动存取款机上输入的密码为取款密码,并且要求输入的密码为6位数,若密码不足6位的,在后面加0补足6位。建议客户将取款密码设成6位,若取款密码不足6位,可能在异地自动取款机上不能取款。
4、在网点自动存取款机上被吞卡的,请与网点人员联系。在非网点自动存取款机上被吞卡的,可拨银行服务电话与座席人员联系。
5、在自动存取款机上进行业务交易发生异常时,如卡上钱已扣但未吐钞、被吞卡但没有打印客户通知单等,请马上与网点或发卡行客户服务中心联系。与网点联系可以使用在ATM或自助取款机旁边的紧急联络器。也可拨打发卡行的客服电话寻求帮助。

Ⅷ 获取数据源变化的主要方式有哪些

源数据变化捕获是数据集成的起点,获取数据源变化主要有三种方式:

回答者:DataPipeline CTO

阅读全文

与数据库增量数据捕获相关的资料

热点内容
要我苹果账号密码忘记了怎么办 浏览:578
快快卡在配置游戏文件 浏览:393
数据包重发时间怎么调整 浏览:882
youtubeapp怎么下载 浏览:366
编程检测是什么 浏览:753
网络摄像机的传输距离 浏览:941
超值猫qq群购秒杀群 浏览:138
pdf文件能备注吗 浏览:174
html可视化数据源码在哪里 浏览:387
adobereader专用卸载工具 浏览:28
vivo手机数据如何备份 浏览:888
ithmb文件转换器 浏览:66
看病找什么网站好 浏览:579
linux如何查看文件系统 浏览:581
linux统计点频率 浏览:627
全民泡泡大战安琪儿升级 浏览:620
编程scratch如何保存 浏览:750
aspnetmvc传json 浏览:132
如何下载看神片的狐狸视频app 浏览:579
怎样将木纹文件添加到cad 浏览:223

友情链接