导航:首页 > 编程大全 > geodatabase数据库设计

geodatabase数据库设计

发布时间:2024-05-07 06:10:28

Ⅰ 如何利用ArcGIS软件创建地理数据库

用ArcCatalog的工具创建。1.显示excel与xy数据:
打开arcmap软件,选择并打开gisdata文件下的oregon文件夹,选择oregongdata.mdb打开,选择gtoposhd栅格并打开,打开orstations.xls,进一步查看字段和属性2.设置坐标系统:在ArcMap中右键点击表名,选择Display
XY Data(显示XY数据),设置坐标字段。(X Field 为LON, Y Field 为LAT),单击Edit
按钮,设置坐标系统,选择坐标系统。(GCS采用NAD
1983):3.点图层与降水数值表关联:添加ORprecipnormals.xls表以实现与orstation表关联,右击orstations表名,选择joins
and relates下的join,选择station name
作为图层关联的基础,关联的表选择orprecipnormals,两表共同的属性选择station
name,点击OK。4.临时点图层导出为Geodatabase数据:右击ORstations¥Events图层,选择Data|Export
Data(导出数据),单击Browse按钮,将Save as type更改为File and Personal Geodatabase feature
classes
,定位到mgisdata\Oregon文件夹,命名输出要素类为Precip。5.创建地理数据库:启动ArcCatalog,添加gisdata文件夹,右击文件夹,选择New|Personal
Geodatabase,输入rcdata作为地理数据库的名称。6.创建要素数据集:右击rcdata地理数据库,选择New,选择Feature
Dataset,命名为Admin创建要素数据集,预定义坐标系统选择UTM Zone
13N,采用相同的方法创建Environmental,Transportation和Watersystem要素集,从Admin中导入坐标系统7.添加Coverage到要素数据集:右击Admin要素数据集,选择Import,选择Feature
Class(single)(单一要素类),将LandUSE(Coverage)POLY导入Admin要素数据集中,命名为LandUSE ,其中的Field
Map中多余的字段如area,Perimeter,Lanse#字段可以删除。8.添加shapefile(裁切)到要素数据集:右击Transportation数据集,选择Import|Feature
Class(single)(单一要素类),从archive文件夹中,导入shape文件rc_roads,命名输出要素为roads,打开ArcToolbox|Analysis
Tools|Extract|Clip;以shape文件sategeol作为Clip Features,输出schools,将其放入Admin数据集中。地理国情监测云平台有相关arcgis 方面的解决方法。以上就是如何利用ArcGIS软件创建地理数据库的答案,希望你能看懂哦。

Ⅱ 空间数据库建库工作程序

1.空间坐标系统

坐标系统:采用1954北京坐标系,高斯-克吕格投影度带投影,带号15,中央经线85°30′,单位为m。

高程基准:采用1956黄海高程系。

2.建库工作程序

在实际操作过程中,采用的建库流程参考国家数字地质图建库标准,结合西天山地区1:25万地质图图幅要素的实际情况,创建GeoDatabase数据库,构建各要素集和要素类,数据库结构如图4-3所示。在矢量化过程中,采用以线性地质要素(断层,地质界线,岩性边界等)矢量为起点,以线跟踪,线拷贝为中心,最后以线转面(Feature to Poly-gon)的方法生成各面类地质图层,然后对临时面文件按各地质要素进行分类,导入各图幅的标准地质数据库中,再进行属性数据的录入。

在建库过程中,第一步,对扫描地质图进行几何校正。第二步,在ArcGIS Catalog平台上,按照前文讨论的各地质要素数据集,各地质要素字段创建数据库表结构。在统一的建库标准下建立完整的西天山地区地质图数据结构。每一幅地质图形成一个单独的地质数据库(GeoDatabase),每个库包含相同的数据结构和字段类型,每一个属性表形成一个图层,存放对应的地质几何要素;并在各自的数据库下增加临时线文件、临时面文件,用来保存第一步线形矢量化后未分类的图形数据。

在矢量化过程中,我们首先对断层要素进行矢量,因为断层线性平滑,多数断层是地层岩性的公共边界。断层矢量完成后紧接着对所有岩性边界进行矢量,包括沉积岩地层、侵入岩地层和变质岩地层边界,岩性边界数据存入临时线文件,是一个单独的线要素图层,在矢量时,如果断层恰好是岩性边界的界线或公共边,这时,为保证几何图形拓扑一致性,我们采用 “线跟踪” 或 “线拷贝” 的方法将公共边界的断层线直接拷贝至 “临时线” 图层。凡是作为公共边界的线,我们都采用同样的方法进行矢量,比如 “地质界线”图层与其他面状要素的公共边界等。

完成各岩性界线的矢量后,检查若没有遗漏,利用ArcGIS空间分析模块的 “线转面”(Feature to Polygon)工具,将临时线文件转换为临时面文件,设定闭合容差为10m。转换完成后按照沉积(火山)岩、侵入岩、岩墙进行面状要素的分类,逐一导入各自相对应的单独的图层中。对于脉岩(面)要素、火山机构和矿点(点)要素基本很少与其他图层共用边界,因此,直接对这些要素单独进行矢量便可。最后进行图形的质量检查,包括划分岩性类别检查,几何拓扑检查,检查无误且没有遗漏后,导入标准库中。这样基本完成了一幅扫描地质图各类地质要素的图形矢量工作,下一步,主要参考图例、柱状图和地质图说明书进行属性录入,如流程图4-3所示。最后,检查属性数据的录入完整无误后,便可进行下一图幅的矢量工作。

对于化探和航磁的数据处理可以采用多种方式,本次研究中主要采用克里金插值和主成分分析对化探、航磁数据进行处理,并结合地质矿产图说明书相关内容将化探、航磁数据与致矿有关的信息存入空间数据库中。上述数据的生产均在ArcGIS平台上完成。

3.空间数据库内容

本次资源潜力评价空间数据库包含五个要素数据集,15个要素类以及至少6个栅格数据。

地理要素数据集:使用国家基础地理信息中心的1:25万地形数据库中的水系、政区、居民地和交通要素类四个要素类。

基础地质要素数据集:包括1:25万区域地层、侵入岩、火山岩、变质岩、构造分区、断层、矿产7个要素类。其中,资源潜力评价预测底图数据由地层和侵入体所定义的构造相单元属性通过数据融合直接生成,各要素类中所包含的属性内容及相应的数据类型应和区域成矿模型及资源评价所需要素保持一致,实现模型要求与信息的对称,各属性编码参考 《全国矿产资源潜力评价数据模型数据项下属词规定分册》。

物化探要素数据集:包括1:5万航磁要素类、1:5万地面磁法要素类、1:20万区域化探要素类、1:5万区域化探要素类四个要素类。

物化探栅格数据集:主要存储由物化探要素类通过克里金插值转换而来的栅格数据以及在空间分析过程中产生的栅格数据。

遥感栅格数据集:主要用于存储研究区ETM+卫星数据,是近年来在地质矿产应用特别是填图和蚀变信息提取占据主流地位的遥感数据源。

4.数据库质量控制

空间数据库在数据完整性、逻辑一致性、位置精度、属性精度、接缝精度均要求符合中国地质调查局制定的有关技术规定和标准的要求。

Ⅲ 地质-生态环境空间数据库建库标准

一、范围

本标准定义了山东半岛城市群地质-生态环境空间数据库的数据结构框架、数据实体及实体之间的相互关系,定义了成果图件空间数据的要素集、要素类、要素分类代码及属性数据项,可用于山东半岛城市群项目数据的采集、存储、管理、共享及数据库建设。

二、规范性引用文件

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB / T 1. 1—2000 标准化工作导则 第 1 部分: 标准的结构和编写规则

GB / T 13923—92 国土基础信息数据分类代码

GB / T 2260—1999 中华人民共和国行政区划代码

GB / T 2659 世界各国和地区名称代码

GB / T 9649—88 地质矿产术语分类代码

DZ / T 0160—95 1∶ 200000 地质图地理底图编绘规范及图式

DZ / T 0197—1997 数字化地质图图层及属性文件格式

GB 958—99 区域地质图图例 ( 1∶ 50000)

DZ / T 0179—1997 地质图用色标准及用色原则

DDB 9702 GIS 图层描述数据内容标准

GB 17108—1997 海洋功能区划技术导则

中国地质调查局 地质图空间数据库建设工作指南 ( 2. 0 版)

中国地质调查局 1∶ 20 万区域水文地质图空间数据库图层及属性文件格式工作指南

三、术语和定义

本标准涉及的主要术语如下:

1. 地理信息数据库 ( geodatabase)

采用标准关系数据库技术来管理、表现地理信息的空间数据库。

2. 数据包 ( data package)

逻辑相关数据实体的集合,本标准中将山东半岛城市群项目数据整体视作一个数据包。

3. 数据实体 ( data entity)

描述专业领域同一类型数据的数据元素的集合,如地质构造数据实体,概念上等同于UML 的类。数据实体可通过一个或多个相关的数据元素及相关的数据实体定义。

4. 数据集 ( dataset)

逻辑相关数据组成的数据集合,如一幅地图可视作一个数据集,数据集是一个逻辑上的整体。

5. 数据子集 ( subdataset)

按一定规则划分的数据集中逻辑相关数据的集合,本标准中的一个数据子集对应一个地图要素类,数据子集类别对应地图上的图层划分。

6. 空间数据 ( spatial data)

用来表示空间实体的位置、形状、大小和分布特征诸方面信息的数据。空间数据不仅具有实体本身的空间位置及形态信息,而且还有实体属性和空间关系 ( 如拓扑关系)信息。

7. 空间参照系 ( spatial reference)

对地理信息数据的空间范围和投影的描述。

8. 地图 ( map)

地理信息的图形描述,包括地理信息数据和地图元素,如标题、图例和比例尺等。本标准中将一幅地图视作一个数据集进行管理,并通过一组要素集 ( 要素类、关系类、属性表的集合) 、空间参照系、地图样式定义地图的数据内容及显示方式。

9. 图层 ( layer)

地图上特定区域范围内按一定规则划分的相似要素类的集合,如水系、城镇。图层为要素类的专题组合及表现,一个图层定义了它包含地理信息数据的地理位置和显示方法。

10. 要素 ( feature)

现实世界中的对象在地图图层中的表示,如地图中表示道路的一条线。

……

四、缩略语和符号

1. 缩略语

ARD 图外整饰要素 ( Elements Around Map)

BMAP 地理底图 ( Basemap)

BOU 境界、边界 ( Bourn)

CD 代码 ( Code)

COL 综合柱状图 ( Colomnar Chart)

DT 日期 ( Date)

ELE 地形高程 ( Elevation)

……

2. UML 类图符号

山东半岛城市群地区地质-生态环境与可持续发展研究

3. ER 图符号

山东半岛城市群地区地质-生态环境与可持续发展研究

五、基于 UML 的 Geodatabase 的空间数据模型

构建地质数据的空间数据模型是建立地质信息数据库的一项关键工作,是数据库建设的基础。Geodatabase 数据模型作为 ArcGIS 软件平台的一种通用数据形式,目前已被国内外众多地质空间数据库的建设所采用。数据建模也已经成为地质数据库建立的一项主要内容。

目前针对地质、水文、矿产、海洋等多个领域的专业 Geodatabase 数据模型都已存在,国内目前应用于区域地质 - 生态环境调查的综合地质 - 生态环境空间数据模型还比较少见。因此,本项目在分析国内外目前比较通用的各专业数据模型的基础上,提出了专门面向山东半岛城市群地质 - 生态环境空间数据库建设的 Geodatabase 数据模型。

在 Geodatabase 数据模型中,允许定义要素之间类型的关联,Geodatabase 对空间数据管理以关系数据库为基础,利用商用关系数据库成熟的数据处理能力对空间数据和非空间数据进行统一管理。Geodatabase 使用面向对象的方法,使得要素可以具有自己的行为和属性,并且要素类具有继承性、多态性和封装性。这样,以更加适合自然的行为和人的思维方式去组织数据,更精确地模拟真实世界。

1. Geodatabase 数据模型的结构体系

Geodatabase 数据模型作为一种新型的面向对象的数据模型,融入了面向对象的核心技术,如类 ( Class) 、对象 ( Object) 、封装 ( Encapsulation) 、继承 ( Inheritance) 和多态( Polymorphism) 等思想和技术。Geodatabase 数据模型的目的就是为了让用户能更容易、更自然地表示 GIS 数据特征和更容易地建立特征之间的各种关系。Geodatabase 空间数据库数据模型如表 12 -1 所示。

表 12 -1 Geodatabase 内部结构

续表

2. Geodatabase 数据库模型的特点

Geodatabase 有两种,即个人与多用户 Geodatabase。

1) 个人 Geodatabase 支持内置于 ArcGIS 系统并提供对本地数据的访问,适用于面向项目的 GIS,在 Microsoft Access 数据库平台上实现,提供生成和更新 Access 数据库的服务,可处理小型或适中的 Access 数据库。但个人 Geodatabase 的存储容量有不能超过 2GB的限制。

2) 多用户的 Geodatabase 是通过 ArcSDE ( ARC 空间数据库引擎) 实现的。ArcSDE可以生成和访问从小型到大型的 Geodatabase 并提供关系型数据的开放界面。

与标准的关系数据库相比,Geodatabase 简化了地理数据建模的工作,因为它包含有用于建模地理信息的通用模型。

此外,Geodatabase 还同时支持两个视图,即对象视图和关系视图。这样就综合了对象视图和关系视图两者的优点。对象视图在 Geodatabase 中占据主导地位,其目的是提供一个接近于逻辑数据模型的数据模型,因而更接近于现实。关系视图则用于一些 Geodata-base 数据的常规处理,它表示的是一些简单地理对象的特征。

3. 基于 UML 的 Geodatabase 数据模型的设计

( 1) Geodatabase 数据库设计的方法

在 ArcGIS 中,建立地理数据库可以有多种方法。借助 ArcCatalog,可以通过 3 种方式建立新的地理数据库。

第一种方法是建立一个新的地理数据库。

第二种方法是移植已经存在的数据到地理数据库中去。

第三种方式是用 CASE 工具来建立地理数据库。

( 2) 面向对象和 UML ( 统一建模语言)

面向对象是软件程序设计中的一种新思想,它能使程序设计更加贴近现实,并且花费更小的精力。面向对象方法学包含了对象 ( object) 、类 ( classification) 、继承 ( inherit-ance) 、聚集和消息 ( messages) 的概念。

UML ( Unified Modeling Language,统一建模语言) 是一种基于面向对象方法的建模语言,具有创建系统的静态结构和动态行为等多种结构模型的能力,是一种通用的建模语言。在 Geodatabase 的设计中,主要用到描述系统静态结构的类图。类图的节点表示系统中的类及其属性和操作。类图的边表示类之间的联系,包括继承、关联、依赖、聚合等。

类的表示由 3 个部分方框组成,上面部分给出了类的名称; 中间部分给出了该类的单个对象的属性; 下面部分给出了一些可以应用到这些对象的操作。类的表示如图 12 -5。

图 12 -5 类的表示

关联是对类的实例之间联系的命名,与关联有关的内容有关联元数 ( Degree) 、关联角色 ( Role) 和重复度 ( Multiplicity) 。

UML 中有 3 种类型的类: 抽象类 ( abstract class) 、可创建化类 ( creatable class) 和可实例化类 ( instantiable class) 。

UML 类图的符号见本节第四部分内容。

( 3) 面向对象的地理数据模型的设计方法

利用 CASE 工具进行 Geodatabase 数据模型设计的步骤具体为:

1) 在 CASE 工具中进行 UML 建模。

2) 将设计好的 UML 模型载入资料库 ( repositry) 。

3) 利用 GIS 软件提供的 CASE 接口,根据资料库中的 UML 模型生成空间数据库结构。至此,Geodatabase 空间数据库结构初具雏形。在 GIS 软件环境中,现在可以将新生成的数据或已有的数据进行格式转换后载入到设计好的 Geodatabase 空间数据库中,由空间数据库统一管理。利用 CASE 工具来建立 Geodatabase 地理数据库的工作流程见图12 - 6。

图 12 -6 利用 CASE 工具来建立 Geodatabase 地理数据库的工作流程

六、地质 - 生态环境 Geodatabase 数据模型的建立

( 一) 数据模型设计的依据

根据山东半岛城市群地质 - 生态环境调查评价研究工作的需要和山东半岛城市群地质 - 生态环境 GIS 数据库系统的整体设计要求,结合各地质 - 生态环境要素的成果图件和文本报告资料,利用 UML 设计工具 Microsoft Visio 完成了山东半岛城市群地质 - 生态环境Geodatabase 数据模型的设计 ( 图 12 - 7) 。

图 12 -7 山东半岛城市群地质 - 生态环境 Geodatabase 数据模型的设计依据

( 二) 山东半岛城市群地质 - 生态环境数据库的 UML 类图

1. 数据集管理

山东半岛城市群项目数据包中的数据以数据集为单元统一组织管理,数据集管理方式就是将一份文字报告或一幅成果图件视作逻辑上的整体,用 “数据集编号”唯一标识,通过数据集实体统一管理。同一数据集的不同实体,例如成果图中的图层,通过实体中的“数据集编号”元素关联。

2. 空间数据管理

山东半岛城市群项目数据包由文字报告及成果图件两大类数据组成,并以成果图件为主,成果图件是一空间数据实体,统一存储在面向对象的地理信息数据库中,以图幅为单元进行管理。

3. 数据包总体结构

本标准中山东半岛城市群项目数据包总体结构用 UML 模型来体现,山东半岛城市群项目数据包由 “成果报告”、“元数据”及 “存档文件”3 个数据实体 ( UML 类) 组成,通过 “数据集”实体统一组织管理。“成果报告”由它的继承类 “文字报告”及 “成果图件”定义,为研究成果数据包的主体数据。“元数据”及 “存档文件”为数据集的辅助数据,“元数据”存放文字报告或成果图件的元数据; “存档文件”存放文字报告或成果图件的相关存档文件,供数据集数据的整体下载与利用。

一个 “数据集”实体对应一个项目的 “文字报告”或一幅 “成果图件”; 每一个数据集必须有一个而且只能有一个 “元数据”文件; “存档文件”是 “数据集”的可选聚合实体。

“成果图件”是一空间数据实体,由特定的面向对象地理信息数据库 ( Geodatabase)统一存储、管理。一幅 “成果图件”数据内容由一组空间要素集 ( 基础地理要素集、地质要素集、地球物理要素集、地球化学要素集、辅助要素集) 组成,空间要素集数据类型包括矢量 ( Feature Dataset,简称要素集) 、栅格 ( Raster Dataset) 和 TIN ( TIN Dataset)3 种。

4. 数据集编号的编码规则

数据集编号由数据库管理方统一编码,必须保证编号在数据库中唯一,编号中的英文字母全部大写。

山东半岛城市群项目数据集按 “项目或图幅—提交单位—提交年份—成果序号”编码。数据集编号的字符串长度不得超过 22 位,以保证 “数据集编号 + 要素类名”的字符串总长度不超过 30 位。

5. 成果图件要素类命名规则

要素类名字符串总长度不得超过 8 位。

矢量要素类按 “要素集类型 + 要素类名 + 要素类型”命名,全部用大写英文字母表示。“要素集类型”用一位代码表示,如 “L”表示基础地理要素集。栅格数据集数据以“要素集类型 + 要素类型”命名,要素类型用代码 RAS 表示,如 “DRSRAS”表示遥感栅格数据。TIN 数据集数据以 “要素集类型 + 要素类型”命名,要素类型用代码 TIN 表示,如 “LELETIN”表示地面高程 TIN。

6. 成果图件要素分类编码规则

要素分类编码用以标识不同的要素类要素,保证地图要素存储、交换、显示的一致性。

( 1) 分类编码原则

1) 科学性、系统性;

2) 相对稳定性;

3) 不受地图比例尺的限制;

4) 完整性和可扩展性;

5) 适用性。

( 2) 分类编码方法

成果图件要素类中不同要素的分类编码采用中华人民共和国国家标准 《国土基础信息数据分类与代码》的编码结构,结构如下:

山东半岛城市群地区地质-生态环境与可持续发展研究

大类码、小类码、一级代码和二级代码分别用数字顺序排列。识别位由用户自行定义,以便于扩充。在本项目中编码分两类: ①基础地理要素编码; ②地质专业要素编码( 地质、地球物理、地球化学等) 。

( 三) 山东半岛城市群项目数据实体及实体关系

山东半岛城市群项目数据实体类及其代码见表 12 -2,实体类名代码按实体类的英文名缩略语编码,本标准中山东半岛城市群项目数据实体及实体间关系用 UML 及实体关系图 ( ERD) 来体现。

表 12 -2 山东半岛城市群项目数据实体类及其代码

1. 数据集实体 ( MGRD_Dataset)

山东半岛城市群项目数据包中的 “数据集”实体用来统一组织管理 “文字报告”、“成果图件”、“元数据”及 “存档文件”数据实体,“数据集”实体中的数据项包含数据集的归属项目、提交日期、提交单位、主题类别及地理范围等可用于数据集检索的信息。一个 “数据集”实体对应一个项目的 “文字报告”或一幅 “成果图件”,“数据集”实体与 “元数据”实体间为一一对应关系,与 “存档文件”实体间为一对多的对应关系。“数据集”实体的数据内容及其存储表通过 “数据子集”实体分类定义,主键 [数据集编号]可用于同一数据集中不同 “数据子集”的关联,也可用于数据集对应的 “元数据”及“存档文件”的关联。

2. 成果报告数据实体 ( MGRD SumTmaryReport)

研究成果报告数据实体包括项目的最终综合文字报告及相应的成果图件。

( 1) 文字报告数据实体 ( SR_WordReport)

文字报告数据实体包括 “文字报告”及图像格式的 “报告附图”数据实体,文字报告及附图均以二进制大对象存储。数据实体之间通过 [数据集编号] 关联。

( 2) 成果图件数据实体 ( SR_hemeMapSet)

“成果图件”数据实体是一空间数据实体,主要以矢量图形格式存储在地理信息数据库中,其中也包括栅格数据及 TIN 数据用于数据的空间分析。

1) 要素集: “成果图件” 数据实体以图幅为数据集单元进行管理; 图幅内容以分属不同空间要素集 ( 基础地理要素集、地质要素集、地球物理要素集、地球化学要素集、辅助要素集) 的要素类组合,同一个要素集内的要素类享有同一空间参照系,相互具有拓扑关系。

2) 要素类: 一个要素类的存储单元为关系数据库中的一个数据表,要素类图元类型有点、线、面、注记 4 种,一个要素类只能包含一种图元类型。本标准中基础地理要素集、地质要素集、地球物理要素集、地球化学要素类、辅助要素集的要素类用 UML 类图体现。

3) 图层: 图层为要素类的专题组合及表现,不同图层的组合即构成了可视化 “成果图件”。本项目通过对数据来源的分析,提出并建立了适合山东半岛城市群地区地质 - 生态环境调查与评价特点的空间数据库数据图层。考虑到空间数据的应用和相互转换,每一图层均应建立相应的内部属性表,属性表必须包含一些基本字段内容,根据具体任务的不同,需灵活扩充内部属性表字段内容。 “成果图件”数据实体的图层划分及其代码见表 12 -3。

4) 要素类属性: 要素类的要素特征由属性表定义,属性表每一行对应一个要素,每一列包含要素的一个特征信息。

表 12 -3 成果图件数据实体的图层划分及其代码

5) 要素类要素分类: 同一要素类中不同类型的要素用不同的代码标识,通过属性表中的 “编码” ( GEO_CODE) 数据项体现,以便地图中同一要素类要素的分类显示,并保证地图要素存储、交换、显示的一致性。在本项目中成果图件的基础地理要素分类代码采用中华人民共和国国家标准 《国土基础信息数据分类与代码》,并根据需要进行了扩充,地质专业要素分类代码全部由本标准定义,见表 12 -4 和表 12 -5。

表 12 -4 基础地理要素分类代码

表 12 -5 地质专业要素分类代码

图12 -8 山东半岛城市群项目数据包UML类图

图层编码中,第一位为图类代码,L 代表基础地理类图层; D 代表基础地质类图层;G 代表国土资源图层; W 代表地壳稳定性图层; S 代表水资源图层; H 代表海岸带图层;T 代表生态环境图层; R 代表人类工程活动图层; F 代表分析评价图层; Y 代表预测与防治图层; Z 代表辅助图层。第二位为比例尺代码,图件均采用 1∶ 50 万比例尺,代码为 B。第三位到第五位为图名的汉语拼音首字母缩写。第六位为图层数字编号。

( 四) 山东半岛城市群项目 UML 类图

1. 山东半岛城市群项目数据包 UML 类图

UML 类图见图 12 - 8。

2. 成果图件要素集 UML 类图

1) 基础地理要素集实体 UML 类图 ( FD_Geography) 。本项目将基础地理要素分为地理网格、居民地、境界、交通网、地貌地形、水系、海洋海岸带、行政区划、栅格数据等 9个抽象要素类,建立了 “各市基本情况”对象类,与表明各地区域的 “城市群”类相连接,将山东半岛城市群8 个地级市的地理位置数据与地区的基本资料数据有机地联系起来。

2) 地质要素集实体 UML 类图 ( FD_Geology) 。

3) 国土资源要素集实体 UML 类图 ( FD_LandResource) 。

4) 水资源要素集实体 UML 类图 ( FD_WaterResource) 。

5) 生态环境要素集实体 UML 类图 ( FD_Environment) 。

6) 辅助要素集实体 UML 类图 ( FD_Ancillary) 。

3. 山东半岛城市群项目数据实体关系图

1) 数据集实体 ER 图 ( MGRD_DataSet) 。

2) 研究成果报告数据实体 ER 图 ( MGRD_SummaryReport) ( 图 12 - 9) 。

图 12 -9 研究成果报告数据实体 ER 图 ( MGRD_SummaryReport)

七、山东半岛城市群项目数据包数据字典

( 一) 数据集实体 ( MGRD_DataSet)

山东半岛城市群地区地质-生态环境与可持续发展研究

( 二) 研究成果报告数据实体 ( MGRD_SummaryReport)

1. 文字报告数据实体 ( SR_WordReport)

山东半岛城市群地区地质-生态环境与可持续发展研究

2. 成果图件数据实体 ( SR_ThemeMapSet)

( 1) 基础地理要素集实体 ( FD_Geography)

山东半岛城市群地区地质-生态环境与可持续发展研究

( 2) 地质要素集实体 ( FD_Geology)

山东半岛城市群地区地质-生态环境与可持续发展研究

( 3) 水资源要素集实体 ( FD_HydroResource)

山东半岛城市群地区地质-生态环境与可持续发展研究

Ⅳ 数据库物理模型

数据库物理模型设计的目标是根据选定的Oracle数据库系统特点和航空物探数据管理与服务的业务处理需求,确定航空物探数据库最优的物理环境、存取方法和存储结构。即通过数据库物理设计,以便达到物理数据库结构的优化,使得在数据库上运行的各种事务响应时间少、存储空间利用率高、事务吞吐率大。

一、数据库布局

航空物探信息系统的维护数据(部门、岗位、人员、人员权限、数据入库检查规则及数据字典等)相对比较稳定。入库前数据需经过各种检查校对,确认数据正确后才能归档,存入航空物探资料数据库,所以存入资料库前的数据可能经常需要修改和删除,相对变化较大;而存入资料数据库中的数据一般不允许修改和删除,以免误操作破坏资料库数据造成损失。

图2-12 航空物探数据库逻辑模型

图2-13 航空物探数据库布局与数据采集流程图

据此,我们采用图2-13所示的数据库数据采集流程,并将航空物探数据库分为资料采集数据库、资料数据库、系统维护数据库分别进行存储和管理,实现数据的统一管理和统一使用,便于数据入库和易于维护等。

航空物探资料数据库是航空物探所有数据最终存储的场所。资料采集数据库是数据归档存入资料数据库前的临时“集散地”,在此接收各项检查,在确认数据无误后归档到资料数据库,然后删除资料采集数据库中已归档的数据。此外,资料采集数据库中还保存数据入库、维护、检查日志及归档记录。

系统维护数据库,存储系统维护信息(如系统功能、数据库表清单等)、安全信息(如信息系统用户的角色、权限、授权的系统功能等),数据字典、入库数据检查规则等。将其与航空物探数据分开,有利于系统维护和管理。

二、数据库空间设置

数据库空间设置包括磁盘空间设置、应用系统表空间设置、撤销表空间、临时表空间、日志空间和索引空间设置。

(一)磁盘空间设置

磁盘空间设置的目标:磁盘性能不能阻碍实现数据库性能,数据库磁盘必须专用于数据库文件,否则非数据库将会影响到数据库性能,且磁盘空间必须满足恢复和性能的要求。

航空物探数据库服务器为IBMP620小型机,8块硬盘,每块硬盘36GB空间,每块物理磁盘建立一个文件系统。为了提高磁盘的反应时间和寻道时间,提高I/O的存取效率,除了一块硬盘用于UNIX操作系统外,其余7块磁盘分别存放资料采集数据库、系统维护数据库-日志文件,资料数据库及资料数据库的大字段数据、索引、回滚段和数据日志文件。

(二)应用系统表空间设置

信息系统数据采集过程对数据的事务操作比较频繁,经常进行数据插入(新数据入库)、修改(入库数据有误)和删除操作(数据重新导入或归档入库),因此航空物探资料采集数据库所在的表空间会很活跃。为了不影响其他I/O的竞争,同时也可以提高数据入库的操作效率(50多年的历史数据需要集中入库),分配一个磁盘空间(36GB)为采集库的表空间。由于采集数据归档入资料库后被删除,同时进行数据入库的项目也不是很多,虽仍保留所有的采集日志数据,一个磁盘空间也足够使用。

航空物探资料数据库的二维表和Oracle大字段(BLOB)分别存放在不同的物理磁盘(每个磁盘36GB)上,对同时存在有表格数据和大字段数据的数据库表(如航迹线数据)时,可以提高磁盘I/O效率。随着数据入库的项目越来越多,需要增加相应的物理磁盘或磁盘阵列。

系统维护数据库相对稳定,占用磁盘空间约500M左右。由于系统磁盘有限,把日志文件存放该磁盘中。

(三)撤销表和临时表空间的设置

在Oracle数据库中,撤销的目的是确保事务的回退和恢复。撤销参数有UNDO_MANAGEMENT、UNDO_TABLESPACE和UNDO_RETENTION。

UNDO_MANAGEMENT参数用于数据库中管理撤销数据的方式,航空物探数据库设置为自动模式(auto)。

UNDO_TABLESPACE参数用于指定数据库中保存撤销数据的撤销表空间名称,航空物探数据库撤销表空间名称为UNDO_ARGS_TBSPACE,空间大小设置为20GB,以确保在保留时间内进行恢复。

UNDO_RETENTION参数用于指定已经提交事务的撤销数据在能够覆盖之前应该保留多长时间,本数据库系统设置为60min。

临时表空间是用以存储大量的排序,与撤销表空间存放在一个物理磁盘上,本数据库系统临时表空间设置为500M。

(四)日志空间设置

日志的主要功能是记录对数据库已做过的全部操作。在系统出现故障时,如果不能将修改数据永久地写入数据文件,则可利用日志得到该修改,所以不会丢失已有操作结果。

日志文件主要是保护数据库以防止故障。为了防止日志文件本身的故障,航空物探数据库系统分别在一个独立磁盘和系统维护库磁盘中存放日志文件。若系统出现故障,在下次打开数据库时Oracle数据库系统自动用日志文件中的信息来恢复数据库文件。

根据航空物探数据库信息系统同时登录的用户数及使用的功能,将日志文件大小设置为10GB。

(五)索引表空间设置

为了提高航空物探信息系统的查询和统计速度,把所有索引空间与应用表空间完全分开,从而提高I/O存取效率。航空物探索引表空间大小设置为10GB。

聚集是表的一种存储方法,一般每个基本表是单独组织的,但对逻辑上经常在一起查询的表,在物理上也邻近存放,这样可减少数据的搜索时间,提高性能。

当几个关系(表)以聚集方式组织时,是通过公共属性的值为表聚集的依据。航空物探数据库系统是以项目标识(PROJ_ID)建立聚集的,所有涉及项目标识的数据库表直接引用项目标识聚集。航空物探聚集表空间与索引表空间相同。

三、数据库参数设置

在数据库创建前需要对如下数据库参数进行设置,航空物探参数文件名为Inito-raargs.ora,各种参数设置如下:

DB_block_size=16384

DB_name=oraagrs

DB_domain=oraargs.com

Compatible=9.1.0

Nls_characterset=ZHS16GBK

Open_Cursors=100

DB_files=100

DB_file_mutliblock_read_count=16

Log_checkpoint_interval=256000

Processes=200

四、内存设置

航空物探数据库服务器物理内存为4GB,除部分用于系统开销外,其余全部用于数据库。

Oracle使用共享系统全局区(System Globla Area,SGA)内存来管理内存和文件结构,包含DB_block_Bufers、DB_cache_size、Shared_pool_size、Log_Buffer参数。航空物探数据库系统的全局区内存参数设置如下。

DB_block_Buffers参数为SGA中存储区高速缓存的缓冲区数目,每个缓冲区的大小等于参数DB_block_size的大小,DB_block_Buffers=19200(约300MB)。

Shared_pool_size参数为分配给共享SQL区的字节数,是SGA大小的主要影响者,Shared_pool_size=1228800000(1.2GB)。

DB_cache_size参数是SGA大小和数据库性能的最重要的决定因素。该值较高,可以提高系统的命中率,减少I/O,DB_cache_size=1024000000(1GB)。

Log_Bufer参数为重做日志高速缓存大小,主要进行插入、删除和修改回退操作,Log_buffer=5120000(5MB)。

五、优化设置

由于航空物探信息系统的采集软件和应用软件是采用MS.NETC#进行开发的,应用程序与数据库之间的连接有传统的ODBC和OLEDB两种方式。为了支持ODBC在OLEDB技术上建立了相应的OLEDB到ODBC的调用转换,而使用直接的OLEDB方式则不需转换,从而提高处理速度。

在建立数据库表时,参数Pctfree和Pctused设置不正确可能会导致数据出现行链接和行迁移现象,即同一行的数据被保存在不同的数据块中。在进行数据查询时,为了读出这些数据,磁头必须重新定位,这样势必会大大降低数据库的执行速度。因此,在创建表时应充分估计到将来可能出现的数据变化,正确地设置这两个参数,尽量减少数据库中出现的行链接和行迁移现象。

航空物探资料采集数据库表的插入、修改和删除的频率较高,Pctfree设置为20,Pctused设置为40;系统维护数据库表相对稳定,Pctfree设置为10,Pctused设置为15;资料数据库表除了增加数据外基本不进行修改和删除操作,Pctfree设置为10,Pctused设置为5。

六、扩展性设置

多CPU和并行查询PQO(Parallel Query Option)方式的利用:CPU的快速发展使得Oracle越来越重视对多CPU的并行技术的应用,一个数据库的访问工作可以用多个CPU相互配合来完成。对于多CPU系统尽量采用并行查询选项方式进行数据库操作。航空物探数据库服务器为2个CPU,在程序查询中采用了并行查询的方式。

在航空物探工作量统计、飞行小时统计、测量面积统计和岩石物性统计中,为了加快统计效率,在相应的查询语句中增加了并行查询语句。

随着航空物探高精度测量程度的不断提高,测量数据将越来越大。为了满足航空物探查询效率及发展,将航磁测量数据与校正后航磁测量数据按比例尺分1:20万以下、20万~50万、1:50万以上分别存放3张不同的数据库表。

七、创建数据库

在完成数据库布局、空间设置、内存设置、数据库参数设置、扩展性设置和优化设置后,进行航空物探数据库物理模型设计,即航空物探数据库实体创建。由于航空物探空间数据库逻辑模型是采用ESRI提供的ArcGIS UML构建的Geodatabase模型,因此,使用ESRI公司提供的CaseTools将航空物探数据UML模型图转成空间数据库(Geodatabase)实体(图2-14)。

航空物探属性数据库表(二维表)是采用Power Designer数据库设计平台直接把数据库关系模型生成数据库脚本来创建的。

经过数据库的概念设计、逻辑设计和物理设计,最终生成航空物探数据库。

图2-14 航空物探数据库物理模型实现

八、空间数据的索引机制

对于海量的空间数据库而言,数据库的操作效率是关系到数据库成败的关键问题。为了提高数据的访问、检索和显示速度,数据在加载到数据库时,要素类数据建立了空间索引,栅格数据构建了金字塔结构,对象类数据采用与数据库直接联接的访问机制。

(一)空间索引

为了提高要素类数据的查询性能,在建立航空物探空间数据库时,创建了空间索引机制。常用的空间索引有格网索引、R树索引、四叉树索引等。Geodatabase采用格网索引方式。所谓格网索引是将空间区域划分成适合大小的正方形格网,记录每一个格网内所包含的空间实体(对象)以及每一个实体的封装边界范围,即包围空间实体的左下角和右上角坐标。当用户进行空间查询时,首先计算出用户查询对象所在格网,然后通过格网编号,就可以快速检索到所需的空间实体。

确定适合的格网级数、单元大小是建立空间格网索引的关键。格网太大,在一个格网内有多个空间实体,查询检索的准确度降低。格网太小,则索引数据量成倍增长和冗余,检索的速度和效率较低。数据库的每一数据层采用不同大小、不同级数的空间索引格网单元,但每层最多级数不能超过三级。格网单元的大小不是一个确定性的值,需要根据对象的大小确定。空间索引格网的大小与检索准确度之间的关系如图2-15所示。

选择格网单元的大小遵循下列基本原则:

1)对于简单要素的数据层,尽可能选择单级索引格网。减少RDBMS搜索格网单元索引的级数,缩短空间索引搜索的过程,例如航迹线要素类。

图2-15 索引格网大小与检索准确度的关系

2)如果数据层中的要素封装边界大小变化比较大,应选择2或3级索引格网。Geodata-base最多提供三级格网单元。每一要素封装边界在适合的级内,减少了每一封装边界有多个格网的可能性。在空间索引搜索过程中,RDBMS则必须搜索所有3个格网单元级,这将消耗大量的时间。

3)若用户经常对图层执行相同的查询,最佳格网的大小应是平均查寻空间范围的1.5倍。

4)格网的大小不能小于要素封装边界的平均大小,为了减少每个格网单元有多个要素封装边界的可能性,格网单元的大小应取平均格网单元的3倍。最佳格网单元的大小可能受图层平均查询的影响。

空间域是按照要素数据集定义的,空间索引格网是按照要素类设置的。它们都是在创建Geodatabase数据库时设置,并一经设置,中间不许改变;所以一定要在充分分析数据的情况下确定它们的值。航空物探数据主要是简单要素类,空间跨度为70°。根据上述原则,航空物探数据选择单级索引格网,格网大小为20°。

(二)金字塔结构

金字塔结构的核心是将栅格数据逐级进行抽稀,形成多级分辨率的重采样数据,并将其分割成块,按一定的文件格式(金字塔文件格式)存储成磁盘文件;在以后进行图像显示处理时,只需将要显示的部分所覆盖的块从磁盘文件直接读进内存缓冲区显示即可。从金字塔的所有层中寻找与所要求显示的比例相近或匹配的一层,并将该层的从某一点起的一定范围的图像所覆盖的所有块加载到内存缓冲区,提取所需部分并形成图像。

金字塔算法(图2-16)是通过获取显示时所需要的一定分辨率的数据来提高显示速度。使用金字塔数据格式后,在显示全图时仅需要显示一个较低分辨率的数据,这样既能加快显示速度,又不会影响显示效果。放大图像,尽管显示图像分辨率提高,由于显示区域减小,所以显示速度不会下降。如果没有为栅格数据建立金字塔数据,则每次显示都会读取整个数据,然后进行重采样得到显示所需要的分辨率,明显地降低了显示速度。

图2-16 金字塔压缩示意图

金字塔数据重采样方式有:最近邻法、双线性内插和立方卷积。其中最近邻法适用于离散数据,而双线性内插法和立方卷积法适合于连续数据。

在ArcGISEngine中提供了IRasterPyramid和IRasterPyramid2接口来实现金字塔数据的建立,而建立的数据保存在*.rrd格式的文件中。

(三)空间域定义

空间域是指数据的有效空间范围,即Geodatabase数据库的最大等效坐标的值域范围,其定义主要是指比例系数和MinX、MinY的计算。

因为使用整数比浮点数有更高的压缩率,并且对整数进行二进制搜索比较快,所以多用户Geodatabase以4字节正整数存储坐标,其最大值为32位正整数所能表示的范围是21.4亿(2147483647),整数的范围称为空间域。在创建Geodatabase数据库时需要定义合适的比例系数。大的整数值将消耗大量的计算机物理内存,所以选定的比例系数最好不要大于必须的比例系数。空间域随坐标系的单位变化而变化。

比例系数和空间域之间成反比例关系,比例系数越大(存储单位越小),表达的空间域也越小。为了使目标数据都存储在系统中,需要谨慎地设置比例系数。将目标数据的宽度和高度较适中的数值乘以比例系数,如果结果小于21.4亿,则比例系数是合适的。

航空物探数据模型是为我国的航空物探行业数据建库设计的,它支持的空间数据的坐标范围为我国领土覆盖的海陆空间,最低纬度为赤道。根据概念设计的分析,航空物探数据模型采用的是地理坐标系,坐标系单位是度,基准是Beijing_1954,要求存储的坐标数据精度达到0.01m。在赤道处,赤道圆周长为40075694.6m,则每度弧长=40075694.6×100/360cm=11132137.389cm,即1cm对应8.983000883E-8°。所以,航空物探数据模型的比例系数取为8.98E-8,即存储单位为8.98E-8°,可满足1cm精度要求。

将空间域移动到目标数据范围之前,首先找到空间域在存储单位的中心位置,目的是在必要时向各个方向扩展。4字节正整数可表示的坐标范围:2147483647×8.98E-8=192.84。我国的领土范围是东经70°~140°,北纬0°~60°。所以,选取的比例系数是合适的。把空间域坐标系中心定为90°,然后,计算空间域的MinX、MinY。

MinX=((70+140)÷2)-90=15

MinY=((0+60)÷2)-90=-60

所以坐标的存储数据是:

X_Storage=(X-MinX)/8.98E-8

Y_Storage=(Y-MinY)/8.98E-8

Ⅳ  数据库设计

根据以上数据内容分析,当前遥感综合调查基础数据库主要由各个专题数据库(以矢量数据为主)、公共数据库(既有矢量数据又有栅格数据,前者如1∶25万基础地理数据,后者如1∶25万DEM数据库和1∶25万ETM+遥感影像)等构成,同时整个系统还必须具备自身的扩展机制,随着用户和应用的不断变化,数据库的内容也必将随之变化。因此,遥感综合调查基础数据库设计的主导思想是,利用ArcSDE技术提供的Multiuser Geodatabase模型组织复杂的空间数据,建立一个开放的、灵活的空间数据库。

Geodatabase由矢量要素数据集、栅格数据集、TIN数据集、空间域、规则等部件构成。它对通常所要处理和表达的地理空间要素,如矢量、栅格、三维表面、网络、地址等进行了统一的描述,并引入了这些地理空间要素的行为、规则和关系(ESRI,2001)。而遥感综合调查基础数据库只存储其中的矢量要素数据集、栅格数据集等几种类型。基于Geodatabase的遥感综合调查数据模型如图11.4所示。

设计Geodatabase与设计普通的数据库是相同的,也分成两个基本步骤——逻辑数据模型的表达和数据库模型的物理实施,即逻辑设计和物理设计。逻辑设计是空间数据在用户或应用中的表现形式,物理设计主要是空间数据在存储介质里的具体储存方式。逻辑数据模型是对所要研究的现实世界的有关数据而建立的一个抽象的关联结构,以描述这些数据之间的逻辑关系。它完全独立于具体系统实现和处理过程,区别于物理数据模型,即它不是一个在数据库管理系统中的表结构,不化解或消除实体间的多对多关系,更接近于现实世界,是一个访问数据的基本视图。可以说逻辑层是物理层的表现,而物理层是逻辑层的基础。

图11.4基于GeoDatabase的遥感综合调查数据模型

图11.5逻辑层与物理层的联系

从逻辑设计的角度来看,本系统基础数据库的设计思路是:数据库→子库→图层→空间实体,库可以包含多个子库,子库用来存放不同比例尺或不同用途的空间数据,再根据项目设计书的要求对每一个子库做大类和图层的划分。从物理设计的角度来看,最终反映在ArcSDE的物理数据库模型则是GEODATABASE→FEATUREDATASET→FEATURECLASS→FEATURE(如图11.5)所示。

阅读全文

与geodatabase数据库设计相关的资料

热点内容
手机app整合文件名 浏览:492
压缩包保存文件找不到临时文件 浏览:958
iphone4来电mv素材 浏览:684
数据库怎么查速度 浏览:89
项目数据分析师证在哪里查询 浏览:725
淘宝怎么免费升级专业版 浏览:771
淘特app买手机壳如何微信支付 浏览:59
windows迁移到mac的文件找不到了 浏览:674
最近比较火的网络游戏有哪些 浏览:377
linuxoracle日志 浏览:54
计算机网络课程作用 浏览:902
win10下ftp服务器搭建 浏览:150
oppo原配数据线多少钱 浏览:835
找不到重生细胞文件夹 浏览:951
文件夹糊盒机 浏览:262
云数据产业园有哪些 浏览:48
微信群里有我但收不到 浏览:915
js点击图片放大效果 浏览:839
苹果6和se哪个值得买 浏览:943
哪些app可以查询抖音带货 浏览:680

友情链接