Ⅰ bp算法在人工神经网络中的作用是什么
BP(Back Propagation)算法是一种常用的人工神经网络训练算法,是通过反向传播来调整神经网络权值的算法。在人工神经网络中,BP算法的作用是帮助神经网络对输入的数据进行学习,并通过学习来调整神经网络的权值,以使得神经网络能够较好地对未知数据进行预测。
Ⅱ 如何理解神经网络里面的反向传播算法
1.普通的机器学习模型:
其实,基本上所有的基本机器学习模型都可以概括为以下的特征:根据某个函数,将输入计算并输出。图形化表示为下图:
当我们的g(h)为sigmoid函数时候,它就是一个逻辑回归的分类器。当g(h)是一个只能取0或1值的函数时,它就是一个感知机。那么问题来了,这一类模型有明显缺陷:当模型线性不可分的时候,或者所选取得特征不完备(或者不够准确)的时候,上述分类器效果并不是特别喜人。如下例:
我们可以很轻易的用一个感知机模型(感知器算法)来实现一个逻辑与(and),逻辑或(or)和逻辑或取反的感知器模型,(感知器模型算法链接),因为上述三种模型是线性可分的。但是,如果我们用感知器模型取实现一个逻辑非异或(相同为1,不同为0),我们的训练模型的所有输出都会是错误的,该模型线性不可分!
2.神经网络引入:
我们可以构造以下模型:
(其中,A代表逻辑与,B代表逻辑或取反,C代表逻辑或)
上述模型就是一个简单的神经网络,我们通过构造了三个感知器,并将两个感知器的输出作为了另一个感知其的输入,实现了我们想要的逻辑非异或模型,解决了上述的线性不可分问题。那么问题是怎么解决的呢?其实神经网络的实质就是每一层隐藏层(除输入和输出的节点,后面介绍)的生成,都生成了新的特征,新的特征在此生成新的特征,知道最新的特征能很好的表示该模型为止。这样就解决了线性不可分或特征选取不足或不精确等问题的产生。(以前曾介绍过线性不可分的实质就是特征不够)
神经网络的模型结构如下:
(蓝色,红色,黄色分别代表输入层,影藏层,输出层)
在此我们介绍的神经网络中的每一个训练模型用的都是逻辑回归模型即g(h)是sigmoid函数。
我们可以将神经网络表示如下:
3.神经网络的预测结果(hypothesis函数)的计算和CostFunction的计算
预测结果的计算其实与普通的逻辑回归计算没有多大区别。只是有时候需要将某几个逻辑回归的输出作为其他逻辑回归模型的输入罢了,比如上例的输出结果为:
那么CostFunction的计算又和逻辑回归的CostFunction计算有什么区别呢?
逻辑回归的CostFunction如下:
上述式子的本质是将预测结果和实际标注的误差用某一种函数估算,但是我们的神经网络模型有时候输出不止一个,所以,神经网络的误差估算需要将输出层所有的CostFunction相加:
k:代表第几个输出。
补充:神经网络可以解决几分类问题?
理论上,当输出单元只有一个时,可以解决2分类问题,当输出单元为2时可以解决4分类问题,以此类推...
实质上,我们三个输出单元时,可以解决三分类问题([1,0,0],[0,1,0],[0,0,1]),为什么如此设计?暂时留白,以后解决
ps:面试题:一个output机器,15%可能输出1,85%输出0,构造一个新的机器,使0,1输出可能性相同? 答:让output两次输出01代表0,10代表1,其余丢弃
4.神经网络的训练
这儿也同于logistic回归,所谓的训练也就是调整w的权值,让我们再一次把神经网络的CostFunction写出来!
W代表所有层的特征权值,Wij(l)代表第l层的第i个元素与第j个特征的特征权值
m代表样本个数,k代表输出单元个数
hw(x(i))k代表第i个样本在输出层的第k个样本的输出 y(i)k代表第i个样本的第k个输出
然后同于logistic回归,将所有的W更新即可。难处在于此处的偏导数怎么求?首先得说说链式求导法则:
所以我们可以有:
接下来的问题就是有theta了,当我们要求的错误变化率是最后一层(最后一层既是输出层的前一层)且只看一个输出神经元时则:
多个相加即可
那么中间层次的神经元变化率如何求得呢?我们需要研究l层和了+1层之间的关系,如下图:
第l层的第i个Z与第l层的第i个a的关系就是取了一个sigmod函数,然而第l层的第i个a与和其对应的w相乘后在加上其他的节点与其权值的乘积构成了第l+1层的Z,好拗口,好难理解啊,看下式:
大体也就是这么个情况,具体的步骤为:
1.利用前向传播算法,计算出每个神经元的输出
2.对于输出层的每一个输出,计算出其所对应的误差
3.计算出每个神经元的错误变化率即:
4.计算CostFunction的微分,即:
Ⅲ 如何理解反向传播算法
反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是:
(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;
(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;
(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。
反向传播算法的思想比较容易理解,但具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。
1. 变量定义
上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。如图,先定义一些变量:
表示第层的第个神经元连接到第层的第个神经元的权重;
表示第层的第个神经元的偏置;
表示第层的第个神经元的输入,即:
表示第层的第个神经元的输出,即:
其中表示激活函数。
2. 代价函数
代价函数被用来计算ANN输出值与实际值之间的误差。常用的代价函数是二次代价函数(Quadratic cost function):
其中,表示输入的样本,表示实际的分类,表示预测的输出,表示神经网络的最大层数。
3. 公式及其推导
本节将介绍反向传播算法用到的4个公式,并进行推导。如果不想了解公式推导过程,请直接看第4节的算法步骤。
首先,将第层第个神经元中产生的错误(即实际值与预测值之间的误差)定义为:
本文将以一个输入样本为例进行说明,此时代价函数表示为:
公式1(计算最后一层神经网络产生的错误):
其中,表示Hadamard乘积,用于矩阵或向量之间点对点的乘法运算。公式1的推导过程如下:
公式2(由后往前,计算每一层神经网络产生的错误):
推导过程:
公式3(计算权重的梯度):
推导过程:
公式4(计算偏置的梯度):
推导过程:
4. 反向传播算法伪代码
输入训练集
对于训练集中的每个样本x,设置输入层(Input layer)对应的激活值:
前向传播:
,
计算输出层产生的错误:
Ⅳ 反向传播算法是什么
反向传播算法,简称BP算法,适合于多层神经元网络的一种学习算法。
它建立在梯度下降法的基础上。BP网络的输入输出关系实质上是一种映射关系:一个n输入m输出的BP神经网络所完成的功能是从n维欧氏空间向m维欧氏空间中一有限域的连续映射,这一映射具有高度非线性。它的信息处理能力来源于简单非线性函数的多次复合,因此具有很强的函数复现能力。这是BP算法得以应用的基础。
反向传播算法动机简介
反向传播算法被设计为减少公共子表达式的数量而不考虑存储的开销。反向传播避免了重复子表达式的指数爆炸。然而,其他算法可能通过对计算图进行简化来避免更多的子表达式,或者也可能通过重新计算而不是存储这些子表达式来节省内存。
Ⅳ 解读反向传播算法(BackPropagation)
冒泡~周末愉快鸭!
举个例子:
如下图所示,这是 带有一个隐层的三层神经网络 ,
-小女孩→隐藏层节点
-小黄帽→输出层节点
-哆啦A梦→误差
小女孩左侧接受输入信号,经过隐层节点产生输出结果,哆啦A梦则指导参数往更优的方向调整。 由于哆啦A梦可以直接将误差反馈给小黄帽,所以与小黄帽直接相连的左侧参数矩阵可以直接通过误差进行参数优化(实纵线);而与小女孩直接相连的左侧参数矩阵由于不能得到哆啦A梦的直接反馈而不能直接被优化(虚棕线)。但由于反向传播算法使得哆啦A梦的反馈可以被传递到小女孩那进而产生间接误差,所以与小女孩直接相连的左侧权重矩阵可以通过间接误差得到权重更新,迭代几轮,误差会降低到最小。( 也就是说小男孩得到的是直接误差,小女孩是间接误差 )
接下来将用例子演示整个过程
假设有下图这样一个带权值的网络层,第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。
通过前向传播我们得到输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远,接下来我们对误差进行反向传播,更新权值,重新计算输出。
3.输入层---->隐含层的权值更新:
在上文计算总误差对w5的偏导时,是从out(o1)---->net(o1)---->w5,但是在隐含层之间的权值更新时,是out(h1)---->net(h1)---->w1,而out(h1)会接受E(o1)和E(o2)两个地方传来的误差,所以这个地方两个都要计算。
根据BP算法的过程演示,可以得到BP算法的一般过程:
1. 正向传播FP(求损失)
此过程中,我们根据输入的样本、给定的初始化权重值W和偏置项的值b, 计算最终输出值以及输出值与实际值之间的损失值。( 注意:如果损失值不在给定的范围内则进行接下来反向传播的过程, 否则停止W,b的更新。 )
2.反向传播BP(回传误差)
将输出以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。( 主要为: ①隐层到输出层的参数W的更新 ②从输入层到隐层的参数W的更新。 )
Ending~理解计算和公式还是很重要的鸭!
Ⅵ 读懂反向传播算法(bp算法)
反向传播算法可以说是神经网络最基础也是最重要的知识点。基本上所以的优化算法都是在反向传播算出梯度之后进行改进的。同时,也因为反向传播算法是一个递归的形式,一层一层的向后传播误差即可,很容易实现(这部分听不懂没关系,下面介绍)。不要被反向传播吓到,掌握其核心思想就很容易自己手推出来。
我们知道神经网络都是有一个loss函数的。这个函数根据不同的任务有不同的定义方式,但是这个loss函数的目的就是计算出当前神经网络建模出来输出的数据和理想数据之间的距离。计算出loss之后,根据反向传播算法就可以更新网络中的各种参数以此使loss不断下降,即可使输出的数据更加理想。
所以,现在的任务是,已知一个网络的loss之后,如何根据loss来更新参数呢?具体点即如何更新网络节点中的权重w和偏差b的值呢?
这里我们采用的是全连接神经网络进行说明。
要想把这个过程说清楚,首先需要将神经网络中各个参数用文字表达清楚。定义的就是w和b在网络中的准确位置。
对于 表示的是神经网络中第 层第k个节点到神经网络中第 层第j个节点之间的权重。注意w的下标是首位表示的是节点后层节点的位置,末尾表示是前层节点的位置。理解这样的表达方式在后面的计算中会很好理解。
同理,对于b的表示:
b的表示相比于w要简单一些,符号 表示第l层网络在第j个节点的偏置。无论w还是b的表示,上标都是表示层数。并且 和 表示都是第l层网络第j个节点的参数。所以该节点的输出可以表示为:
神经网络输出之后会经过一个激活函数,这用激活函数用 表示,则经过激活函数输出为:
至此,根据上面符号 、 、 、 。我们可以对于神经网络里面每一个数据准确的表示了。
给定一个损失函数之后,用 表示,说白了反向传播就是求∂C/∂w和∂C/∂b,然后将这个值乘以和对应的w,b进行相减就可以实现一次的参数更新了。为什么这样的操作就可以优化网络,减小loss值呢?
来源于导数的概念和速度相关。∂C/∂w和∂C/∂b相当于loss值C相对于w和v变化的速度。如果∂C/∂w是正的,则增大w,C也会增大,如果希望C减小的话,应该减小w;并且∂C/∂w的绝对值越大,表示w对C的值影响越大,w稍微有一点变化,C就会有大幅变化。如果要优化C变小,w应该对应的减少多少呢?也没有一个确定的答案。这里通过变化的速度和学习率相乘作为一个减小的值。通过多轮迭代。最终是希望c达到最小点。而当函数落入最小值的时候,无论是局部最小还是全局最小,其周围一定是平滑的。所以此时∂C/∂w和∂C/∂b将会变得很小甚至为0,即参数不在更新了。当函数在局部最小点处参数不在更新出现梯度消失的问题时,目前也有各种trick进行解决。不是这里的重点。
为了好说明,这里定义一个很简单的损失函数C:
接下来就是有意思的阶段了。这里还是利用上一节中∂C/∂w和∂C/∂b的解释。如果我们想要求出∂C/∂w和∂C/∂b的值,即具体的 、 对C影响速率的值,我们找一个中间变量∂C/∂ 。因为我们知道:
我们定义:
当我们知道了 值之后,我们根据 式子可以很容易求出 。
利用导数的链式法则:
很容易推出来不是?同理可以求出:
可以看出通过媒介 很容易求出∂C/∂w和∂C/∂b。那么我们现在来理解一下 到底是什么意思,以及如何求出来每一个l层j节点的 值。
根据定义:
可以看出来 就是 对于C的影响大小(联系之前说的导数和速率的关系)。而 是第 层第 个神经元未进过激活函数之前的输出。所以我们可以理解 为网络中第 层第 个神经元对loss的影响。所以很直观的看法就是我们先求出单个神经元对loss值得影响,然后再计算该神经元内部参数对于loss的影响。
ok,如果我们已经理解了为什么要引入 变量以及如何利用该变量计算具体参数的梯度后,接下来我们就可以看看如何获得 值。反向传播的名字我想也就是通过计算 的方式而来的。是一层一层递归而来的。
既然说是递归的方式,我们来思考一下 和 之间有什么关系,如果找到这个关系之后,我们就可以默认我们如果知道最后一层网络节点的 值,我们就可以获得倒数第二层网络节点的 值,倒数第三层,倒数第四层,……以此推类即可获得整个网络的每个节点的 值。至此我们的反向传播也基本完成了。
所以最重要的有两点:
先看问题1,直接根据求导的链式法则就可以找出两个的关系,具体公式如下,可以多看看手写一下,思路上也很简单。
觉得这样的链式公式还是很直观的,如果不好理解,可以自己画一个神经网络图,连上节点与节点之间的线,标上参数,然后推一下应该就能理解了。
这里的 都表示的未经过激活函数的神经元的输出。 表示激活函数。因为:
所以:
带入上式就可以得出:
至此就找出了 和 之间的关系了。
(还能简化,根据最开始我们定义的 )。
理解起来就是网络中前面一层某一个神经元对于loss的影响与该层的后一层所有的神经元对loss的影响、该神经元的输出大小、该神经元与后一层神经元连接的权重有关系的,并且是一个累加的效应。这样的理解也是非常直观合乎常理的。
现在万事具备,只差问题2了。即假设最后一层网络是L,最后一层 如何计算得出。最后一层的 值就像一个导火索,一旦有了开始,就可以利用我们之前推出来的: 公式进行反向传播了(反向传播还是很形象的不是?)。现在解决这个问题。这个问题就是和损失函数具体怎么定义有关系了。不过我们先不考虑C的具体形式,根据通用的链式法则我们可以得到:
这里需要注意的是最后一层激活函数使用的是哪种。最后一层激活函数在计算某一个神经元的输出时可能会结合其他节点的输出来计算。比如softmax激活函数,其输出的是一个概率值【0,1】。输出大小就是结合输出所有的值。
现在我们来考虑两个具体的损失函数,并且采用之前定义的均方误差损失函数 :
求导为:
因为sigmoid输出的值仅仅和输入的x值有关 。所以 当 时值为0.所以:
根据上面,BP推导有三部曲,先求出 ,再根据 分别求出 、 。总结公式如下:
启动上面反传的导火索是最后一层的 值,计算公式为:
根据最后一层不同类型的激活函数不同对待。
Ⅶ 如何理解神经网络里面的反向传播算法
反向传播算法(BP算法)主要是用于最常见的一类神经网络,叫多层前向神经网络,本质可以看作是一个general nonlinear estimator,即输入x_1 ... x_n 输出y,视图找到一个关系 y=f(x_1 ... x_n) (在这里f的实现方式就是神经网络)来近似已知数据。为了得到f中的未知参数的最优估计值,一般会采用最小化误差的准则,而最通常的做法就是梯度下降,到此为止都没问题,把大家困住了很多年的就是多层神经网络无法得到显式表达的梯度下降算法!
BP算法实际上是一种近似的最优解决方案,背后的原理仍然是梯度下降,但为了解决上述困难,其方案是将多层转变为一层接一层的优化:只优化一层的参数是可以得到显式梯度下降表达式的;而顺序呢必须反过来才能保证可工作——由输出层开始优化前一层的参数,然后优化再前一层……跑一遍下来,那所有的参数都优化过一次了。但是为什么说是近似最优呢,因为数学上除了很特殊的结构,step-by-step的优化结果并不等于整体优化的结果!不过,好歹现在能工作了,不是吗?至于怎么再改进(已经很多改进成果了),或者采用其他算法(例如智能优化算法等所谓的全局优化算法,就算是没有BP这个近似梯度下降也只是局部最优的优化算法)那就是新的研究课题了。