导航:首页 > 编程大全 > 人工智能数据库应用实例

人工智能数据库应用实例

发布时间:2023-11-15 10:36:29

1. 大数据和人工智能在互联网金融领域有哪些应用


数据从四个方面改变了金融机构传统的数据运作方式,从而实现了巨大的商业价值。这四个方面(“四个C”)包括:数据质量的兼容性
(Compatibility)、数据运用的关联性(Connectedness)、数据分析的成本(Cost)以及数据价值的转化
(Capitalization)。


大数据在金融业的应用场景正在逐步拓展。在海外,大数据已经在金融行业的风险控制、运营管理、销售支持和商业模式创新等领域得到了全面尝试。在国内,金
融机构对大数据的应用还基本处于起步阶段。数据整合和部门协调等关键环节的挑战仍是阻碍金融机构将数据转化为价值的主要瓶颈。


数据技术与数据经济的发展是持续实现大数据价值的支撑。深度应用正在将传统IT从“后端”不断推向“前台”,而存量架构与创新模块的有效整合是传统金融
机构在技术层面所面临的主要挑战。此外,数据生态的发展演进有其显著的社会特征。作为其中的一员,金融机构在促进数据经济的发展上任重道远。

为了驾驭大数据,国内金融机构要在技术的基础上着重引入以价值为导向的管理视角,最终形成自上而下的内嵌式变革。其中的三个关键点(“TMT”)包括:团队(Team)、机制(Mechanism)和思维(Thinking)。

1.价值导向与内嵌式变革—BCG对大数据的理解

“让数据发声!”—随着大数据时代的来临,这个声音正在变得日益响亮。为了在喧嚣背后探寻本质,我们的讨论将从大数据的定义开始。

1.1成就大数据的“第四个V”

大数据是什么?在这个问题上,国内目前常用的是“3V”定义,即数量(Volume)、速度(Velocity)和种类(Variety)。


虽然有着这样的定义,但人们从未停止讨论什么才是成就大数据的“关键节点”。人们热议的焦点之一是“到底多大才算是大数据?”其实这个问题在“量”的层
面上并没有绝对的标准,因为“量”的大小是相对于特定时期的技术处理和分析能力而言的。在上个世纪90年代,10GB的数据需要当时计算能力一流的计算机
处理几个小时,而这个量现在只是一台普通智能手机存储量的一半而已。在这个层面上颇具影响力的说法是,当“全量数据”取代了“样本数据”时,人们就拥有了
大数据。


另外一个成为讨论焦点的问题是,今天的海量数据都来源于何处。在商业环境中,企业过去最关注的是ERP(Enterprise Resource
Planning)和CRM(Customer Relationship
Management)系统中的数据。这些数据的共性在于,它们都是由一个机构有意识、有目的地收集到的数据,而且基本上都是结构化数据。随着互联网的深
入普及,特别是移动互联网的爆发式增长,人机互动所产生的数据已经成为了另一个重要的数据来源,比如人们在互联网世界中留下的各种“数据足迹”。但所有这
些都还不是构成“大量数据”的主体。机器之间交互处理时沉淀下来的数据才是使数据量级实现跨越式增长的主要原因。“物联网”是当前人们将现实世界数据化的
最时髦的代名词。海量的数据就是以这样的方式源源不断地产生和积累。

“3V”的定义专注于对数据本身的特征进行描述。然而,是否是量级庞大、实时传输、格式多样的数据就是大数据?

BCG认为,成就大数据的关键点在于“第四个V”,即价值(Value)。当量级庞大、实时传输、格式多样的全量数据通过某种手段得到利用并创造出商业价值,而且能够进一步推动商业模式的变革时,大数据才真正诞生。

1.2变革中的数据运作与数据推动的内嵌式变革

多元化格式的数据已呈海量爆发,人类分析、利用数据的能力也日益精进,我们已经能够从大数据中创造出不同于传统数据挖掘的价值。那么,大数据带来的“大价值”究竟是如何产生的?


无论是在金融企业还是非金融企业中,数据应用及业务创新的生命周期都包含五个阶段:业务定义需求;IT部门获取并整合数据;数据科学家构建并完善算法与
模型;IT发布新洞察;业务应用并衡量洞察的实际成效。在今天的大数据环境下,生命周期仍维持原样,而唯一变化的是“数据科学家”在生命周期中所扮演的角
色。大数据将允许其运用各种新的算法与技术手段,帮助IT不断挖掘新的关联洞察,更好地满足业务需求。


因此,BCG认为,大数据改变的并不是传统数据的生命周期,而是具体的运作模式。在传统的数据基础和技术环境下,这样的周期可能要经历一年乃至更长的时
间。但是有了现在的数据量和技术,机构可能只需几周甚至更短的时间就能走完这个生命周期。新的数据运作模式使快速、低成本的试错成为可能。这样,商业机构
就有条件关注过去由于种种原因而被忽略的大量“小机会”,并将这些“小机会”累积形成“大价值”。

具体而言,与传统的数据应用相比,大数据在四个方面(“4C”)改变了传统数据的运作模式,为机构带来了新的价值。

1.2.1数据质量的兼容性(Compatibility):大数据通过“量”提升了数据分析对“质”的宽容度


在“小数据”时代,数据的获取门槛相对较高,这就导致“样本思维”占据统治地位。人们大多是通过抽样和截取的方式来捕获数据。同时,人们分析数据的手段
和能力也相对有限。为了保证分析结果的准确性,人们通常会有意识地收集可量化的、清洁的、准确的数据,对数据的“质”提出了很高的要求。而在大数据时代,
“全量思维”得到了用武之地,人们有条件去获取多维度、全过程的数据。但在海量数据出现后,数据的清洗与验证几乎成为了不可能的事。正是这样的困境催生了
数据应用的新视角与新方法。类似于分布式技术的新算法使数据的“量”可以弥补“质”的不足,从而大大提升了数据分析对于数据质量的兼容能力。

1.2.2数据运用的关联性(Connectedness):大数据使技术与算法从“静态”走向“持续”


在大数据时代,对“全量”的追求使“实时”变得异常重要,而这一点也不仅仅只体现在数据采集阶段。在云计算、流处理和内存分析等技术的支撑下,一系列新
的算法使实时分析成为可能。人们还可以通过使用持续的增量数据来优化分析结果。在这些因素的共同作用下,人们一贯以来对“因果关系”的追求开始松动,而
“相关关系”正在逐步获得一席之地。

1.2.3数据分析的成本(Cost):大数据降低了数据分析的成本门槛


大数据改变了数据处理资源稀缺的局面。过去,数据挖掘往往意味着不菲的投入。因此,企业希望能够从数据中发掘出“大机会”,或是将有限的数据处理资源投
入到有可能产生大机会的“大客户、大项目”中去,以此获得健康的投入产出比。而在大数据时代,数据处理的成本不断下降,数据中大量存在的“小机会”得见天
日。每个机会本身带来的商业价值可能并不可观,但是累积起来就会实现质的飞跃。所以,大数据往往并非意味着“大机会”,而是“大量机会”。

1.2.4数据价值的转化(Capitalization):大数据实现了从数据到价值的高效转化


在《互联网金融生态系统2020:新动力、新格局、新战略》报告中,我们探讨了传统金融机构在大变革时代所需采取的新战略思考框架,即适应型战略。采取
适应型战略有助于企业构筑以下五大优势:试错优势、触角优势、组织优势、系统优势和社会优势,而大数据将为金融机构建立这些优势提供新的工具和动力。从数
据到价值的转化与机构的整体转型相辅相成,“内嵌式变革”由此而生。


例如,金融机构传统做法中按部就班的长周期模式(从规划、立项、收集数据到分析、试点、落地、总结)不再适用。快速试错、宽进严出成为了实现大数据价值
的关键:以低成本的方式大量尝试大数据中蕴藏的海量机会,一旦发现某些有价值的规律,马上进行商业化推广,否则果断退出。此外,大数据为金融机构打造“触
角优势”提供了新的工具,使其能够更加灵敏地感知商业环境,更加顺畅地搭建反馈闭环。此外,数据的聚合与共享为金融机构搭建生态系统提供了新的场景与动
力。

2.应用场景与基础设施—纵览海内外金融机构的大数据发展实践


金融行业在发展大数据能力方面具有天然优势:受行业特性影响,金融机构在开展业务的过程中积累了海量的高价值数据,其中包括客户身份、资产负债情况、资
金收付交易等数据。以银行业为例,其数据强度高踞各行业之首—银行业每创收100万美元,平均就会产生820GB的数据。

2.1大数据的金融应用场景正在逐步拓展

大数据发出的声音已经在金融行业全面响起。作为行业中的“巨无霸”,银行业与保险业对大数据的应用尤其可圈可点。

2.1.1海外实践:全面尝试

2.1.1.1银行是金融行业中发展大数据能力的“领军者”


在发展大数据能力方面,银行业堪称是“领军者”。纵观银行业的六个主要业务板块(零售银行、公司银行、资本市场、交易银行、资产管理、财富管理),每个
业务板块都可以借助大数据来更深入地了解客户,并为其制定更具针对性的价值主张,同时提升风险管理能力。其中,大数据在零售银行和交易银行业务板块中的应
用潜力尤为可观。


BCG通过研究发现,海外银行在大数据能力的发展方面基本处于三个阶段:大约三分之一的银行还处在思考大数据、理解大数据、制定大数据战略及实施路径的
起点阶段。还有三分之一的银行向前发展到了尝试阶段,也就是按照规划出的路径和方案,通过试点项目进行测验,甄选出许多有价值的小机会,并且不停地进行试
错和调整。而另外三分之一左右的银行则已经跨越了尝试阶段。基于多年的试错经验,他们已经识别出几个较大的机会,并且已经成功地将这些机会转化为可持续的
商业价值。而且这些银行已经将匹配大数据的工作方式嵌入到组织当中。他们正在成熟运用先进的分析手段,并且不断获得新的商业洞察。


银行业应用举例1:将大数据技术应用到信贷风险控制领域。在美国,一家互联网信用评估机构已成为多家银行在个人信贷风险评估方面的好帮手。该机构通过分
析客户在各个社交平台(如Facebook和Twitter)留下的数据,对银行的信贷申请客户进行风险评估,并将结果卖给银行。银行将这家机构的评估结
果与内部评估相结合,从而形成更完善更准确的违约评估。这样的做法既帮助银行降低了风险成本,同时也为银行带来了风险定价方面的竞争优势。


相较于零售银行业务,公司银行业务对大数据的应用似乎缺乏亮点。但实际上,大数据在公司银行业务的风险领域正在发挥着前所未有的作用。在传统方法中,银
行对企业客户的违约风险评估多是基于过往的营业数据和信用信息。这种方式的最大弊端就是缺少前瞻性,因为影响企业违约的重要因素并不仅仅只是企业自身的经
营状况,还包括行业的整体发展状况,正所谓“覆巢之下,焉有完卵”。但要进行这样的分析往往需要大量的资源投入,因此在数据处理资源稀缺的环境下无法得到
广泛应用,而大数据手段则大幅减少了此类分析对资源的需求。西班牙一家大型银行正是利用大数据来为企业客户提供全面深入的信用风险分析。该行首先识别出影
响行业发展的主要因素,然后对这些因素一一进行模拟,以测试各种事件对其客户业务发展的潜在影响,并综合评判每个企业客户的违约风险。这样的做法不仅成本
低,而且对风险评估的速度快,同时显著提升了评估的准确性。


银行业应用举例2:用大数据为客户制定差异化产品和营销方案。在零售银行业务中,通过数据分析来判断客户行为并匹配营销手段并不是一件新鲜事。但大数据
为精准营销提供了广阔的创新空间。例如,海外银行开始围绕客户的“人生大事”进行交叉销售。这些银行对客户的交易数据进行分析,由此推算出客户经历“人生
大事”的大致节点。人生中的这些重要时刻往往能够激发客户对高价值金融产品的购买意愿。一家澳大利亚银行通过大数据分析发现,家中即将有婴儿诞生的客户对
寿险产品的潜在需求最大。通过对客户的银行卡交易数据进行分析,银行很容易识别出即将添丁的家庭:在这样的家庭中,准妈妈会开始购买某些药品,而婴儿相关
产品的消费会不断出现。该行面向这一人群推出定制化的营销活动,获得了客户的积极响应,从而大幅提高了交叉销售的成功率。


客户细分早已在银行业得到广泛应用,但细分维度往往大同小异,包括收入水平、年龄、职业等等。自从开始尝试大数据手段之后,银行的客户细分维度出现了突
破。例如,西班牙的一家银行从Facebook和Twitter等社交平台上直接抓取数据来分析客户的业余爱好。该行把客户细分为常旅客、足球爱好者、高
尔夫爱好者等类别。通过分析,该行发现高尔夫球爱好者对银行的利润度贡献最高,而足球爱好者对银行的忠诚度最高。此外,通过分析,该行还发现了另外一个小
客群:“败家族”,即财富水平不高、但消费行为奢侈的人群。这个客群由于人数不多,而且当前的财富水平尚未超越贵宾客户的门槛,因此往往被银行所忽略。但
分析显示这一人群能够为银行带来可观的利润,而且颇具成长潜力,因此该行决定将这些客户升级为贵宾客户,深入挖掘其潜在价值。


在对公业务中,银行同样可以借助大数据形成更有价值的客户细分。例如,在BCG与一家加拿大银行的合作项目中,项目组利用大数据分析技术将所有公司客户
按照行业和企业规模进行细分,一共建立了上百个细分客户群。不难想象,如果没有大数据的支持,这样深入的细分是很难实现的。然后,项目组在每个细分群中找
出标杆企业,分析其银行产品组合,并将该细分群中其他客户的银行产品组合与标杆企业进行比对,从而识别出差距和潜在的营销机会。项目组将这些分析结果与该
行的对公客户经理进行分享,帮助他们利用这些发现来制定更具针对性的销售计划和话术,并取得了良好的效果。客户对这种新的销售方式也十分欢迎,因为他们可
以从中了解到同行的财务状况和金融安排,有助于对自身的行业地位与发展空间进行判断。


银行业应用举例3:用大数据为优化银行运营提供决策基础。大数据不仅能在前台与中台大显身手,也能惠及后台运营领域。在互联网金融风生水起的当
下,“O2O”(OnlineToOffline)成为了银行的热点话题。哪些客户适合线上渠道?哪些客户不愿“触网”?BCG曾帮助西班牙一家银行通过
大数据技术应用对这些问题进行了解答。项目组对16个既可以在网点也可以在网络与移动渠道上完成的关键运营活动展开分析,建立了12个月的时间回溯深度,
把客户群体和运营活动按照网点使用强度以及非网点渠道使用潜力进行细分。分析结果显示,大约66%的交易活动对网点的使用强度较高,但同时对非网点渠道的
使用潜力也很高,因此可以从网点迁移到网络或移动渠道。项目组在客户细分中发现,年轻客户、老年客户以及高端客户在运营活动迁移方面潜力最大,可以优先作
为渠道迁徙的对象。通过这样的运营调整,大数据帮助银行在引导客户转移、减轻网点压力的同时保障了客户体验。


BCG还曾利用专有的大数据分析工具NetworkMax,帮助一家澳大利亚银行优化网点布局。虽然银行客户的线上活动日渐增多,但金融业的铁律在互联
网时代依然适用,也就是说在客户身边设立实体网点仍然是金融机构的竞争优势。然而,网点的运营成本往往不菲,如何实现网点资源的价值最大化成为了每家银行
面临的问题。在该项目中,项目组结合银行的内部数据(包括现有的网点分布和业绩状况等)和外部数据(如各个地区的人口数量、人口结构、收入水平等),对
350多个区域进行了评估,并按照主要产品系列为每个区域制定市场份额预测。项目组还通过对市场份额的驱动因素进行模拟,得出在现有网点数量不变的情况下
该行网点的理想布局图。该行根据项目组的建议对网点布局进行了调整,并取得了良好的成效。这个案例可以为许多银行带来启示:首先,银行十分清楚自身的网点
布局,有关网点的经营业绩和地址的信息全量存在于银行的数据库中。其次,有关一个地区的人口数量、人口结构、收入水平等数据都是可以公开获取的数据。通过
应用大数据技术来把这两组数据结合在一起,就可以帮助银行实现网点布局的优化。BCG基于大数据技术而研发的Network
Max正是用来解决类似问题的工具。


银行业应用举例4:创新商业模式,用大数据拓展中间收入。过去,坐拥海量数据的银行考虑的是如何使用数据来服务其核心业务。而如今,很多银行已经走得更
远。他们开始考虑如何把数据直接变成新产品并用来实现商业模式,进而直接创造收入。例如,澳大利亚一家大型银行通过分析支付数据来了解其零售客户的“消费
路径”,即客户进行日常消费时的典型顺序,包括客户的购物地点、购买内容和购物顺序,并对其中的关联进行分析。该银行将这些分析结果销售给公司客户(比如
零售业客户),帮助客户更准确地判断合适的产品广告投放地点以及适合在该地点进行推广的产品。这些公司客户过去往往需要花费大量金钱向市场调研公司购买此
类数据,但如今他们可以花少得多的钱向自己的银行购买这些分析结果,而且银行所提供的此类数据也要可靠得多。银行通过这种方式获得了传统业务之外的收入。
更重要的是,银行通过这样的创新为客户提供了增值服务,从而大大增强了客户粘性。

2. 大数据和人工智能技术在健康产业有哪些具体应用请举例说明,谢谢!

大健康产业顺应了中国经济转型升级、绿色发展的趋势,全球医疗健康产业投融资金额最多集中在2021年,全年达到6846.03亿元,投融资数量最多在2019年,达2044起。大数据和人工智能技术赋能多个大健康产业领域,包括公共卫生大数据、疾病快速诊断、远程医疗、识别诊断、药物研发、康复治疗等

在数字健康产业供应链,智慧眼一方面“深挖洞”,纵向深耕数字健康产业,形成自主可控、安全可靠的AI核心技术;另一方面是“广积粮”,横向扩展健康产业多元化市场应用场景,帮助政府、医院、群众乃至整个产业界激发数字化力量。

AI+社会保障
基于大数据+人脸识别技术的养老金待遇资格认证系统应用于全国社保二十余个省份的省级平台,解决了养老金防冒领的世界难题,保障社保基金安全,稳定社会大局。

AI+医疗保障
基于大数据+生物识别技术的医保智能场景监控系统已应用于全国近二十个省级医保平台,实现了门诊、住院、购药、血透、健康理疗等场景的智能监控,防范医保欺诈骗保行为,确保医保基金安全。

AI+血透管理
遵循医院血液透析中心临床业务流程,从患者管理、透析日程准备、患者治疗排班、临床辅助决策等不同环节对血液透析治疗进行智能管理和监控。以患者为核心,从根本上改变诊疗信息的采集处理、分析查询和传输方式,为医护人员提供智能化工作方式,辅助医生制定更加人性、优质的治疗决策,提高科室工作质量和院内服务水平,提升患者满意度,做到医疗行为溯源全记录,保障医疗质量和医疗安全。

AI+慢病管理
依托智慧眼云慢病管理系统,门诊慢病患者可在就诊医生处便捷化生成健康管理档案,通过机器学习和医学知识图谱数据库,智能化形成疾病管理目标,帮助医生快速掌握患者信息,指导开药和开展疾病管理,形成以患者为中心的数字化病程管理体系,实现诊前导诊、疾病预判,诊后用药提醒等闭环服务,助力医疗健康行业的持续发展。

AI+健康乡村
以健康乡村综合服务平台&智能终端为载体,将大医院的优质资源通过平台与基层卫生室进行互联,提高基层卫生室的首诊能力和水平,帮助基层的医生在诊断方面有更大的把握和信心,让村民“足不出村”就能享受到便捷的健康服务,助力国家乡村振兴战略落地。

3. 浅谈我们身边的人工智能和大数据为我们生活带来的便利

身边的人工智能和大数据为我们生活带来的便利如下:

1、预测购买行为回帮助商家控制生产和盈利,答企业可以对于海量数据的挖掘和运用,通过,预示着新一波生产率增长和消费者盈余浪潮的到来。



6、分析用户需求,对用户数据进行分析,从而得出每个用户的后期需求,可以帮助用户节省寻找产品的时间。

4. AI在医疗领域有何重要应用,可以举例吗

AI在医疗领域有很多重要应用,以下是一些例子:
基于机器学习的医学影像分析:医学影像分析是医生诊断和评估疾病的关键工具。AI可以通过机器学习的方法来自动识别和分析X光,CT扫描,MRI等医学图像,从而帮助医生更准确地诊断疾病。
个性化医疗:AI可以根据个体病史和基因组数据等信息,为每个人定制更加精准的预防和治疗策略。例如,AI可以预测某种疾病的发病风险,并根据情况为患者提供个性化的预防措施。
医疗辅助决策:医生需要在巨大的医学数据库中筛选出最佳的治疗方案。AI可以利用大数据分析和机器学习算法,快速筛选出治疗方案,并为医生提供辅助决策。
机器人手术:AI可以驱动机器人进行微创手友尺术,精确控制手术过程,从而减少手术风险和侵入性。
疾病预测和预警:AI可以从病例和病原体数据中发现疾病的早期标志,并及早警告医生和患纳告哗者,从而更早的进行诊治和防治。
总之,AI在医疗领域有很多种应用,对提洞行高医疗质量和效率,降低医疗成本都具有重要作用。

5. 数据库具体应用的实例有哪些

数据库的应用领域

1、多媒体数据库: 这类数据库主要存储与多媒体相关的数据,如声音、图像和视频等数据。多媒体数据最大的特点是数据连续,而且数据量比较大,存储需要的空间较大。

2、移动数据库: 该类数据库是在移动计算机系统上发展起来的,如笔记本电脑、掌上计算机等。该数据库最大的特点是通过无线数字通信网络传输的。移动数据库可以随时随地地获取和访问数据,为一些商务应用和一些紧急情况带来了很大的便利。

3、空间数据库: 这类数据库目前发展比较迅速。它主要包括地理信息数据库(又称为地理信息系统,即GIS)和计算机辅助设计(CAD)数据库。其中地理信息数据库一般存储与地图相关的信息数据;计算机辅助设计数据库一般存储设计信息的空间数据库,如机械、集成电路以及电子设备设计图等。

4、信息检索系统: 信息检索就是根据用户输入的信息,从数据库中查找相关的文档或信息,并把查找的信息反馈给用户。信息检索领域和数据库是同步发展的,它是一种典型的联机文档管理系统或者联机图书目录。

5、分布式信息检索: 这类数据库是随着Internet的发展而产生的数据库。它一般用于因特网及远距离计算机网络系统中。特别是随着电子商务的发展,这类数据库发展更加迅猛。

许多网络用户(如个人、公司或企业等)在自己的计算机中存储信息,同时希望通过网络使用发送电子邮件、文件传输、远程登录方式和别人共享这些信息。分布式信息检索满足了这一要求。

6、专家决策系统: 专家决策系统也是数据库应用的一部分。由于越来越多的数据可以联机获取,特别是企业通过这些数据可以对企业的发展作出更好的决策,以使企业更好地运行。由于人工智能的发展,使得专家决策系统的应用更加广泛。

(5)人工智能数据库应用实例扩展阅读

对数据库系统的基本要求是:

①能够保证数据的独立性。数据和程序相互独立有利于加快软件开发速度,节省开发费用。

②冗余数据少,数据共享程度高。

③系统的用户接口简单,用户容易掌握,使用方便。

④能够确保系统运行可靠,出现故障时能迅速排除;能够保护数据不受非受权者访问或破坏;能够防止错误数据的产生,一旦产生也能及时发现。

⑤有重新组织数据的能力,能改变数据的存储结构或数据存储位置,以适应用户操作特性的变化,改善由于频繁插入、删除操作造成的数据组织零乱和时空性能变坏的状况。

⑥具有可修改性和可扩充性。

⑦能够充分描述数据间的内在联系。

6. 人工智能应用在哪些方面呢能举几个典型的例子吗

人工智能应用的领域非常广泛,随着人工智能的不断发展,这些都会一一实现。

1、智能制造领域。 标准化工业制造中信息感知,自主控制,系统协调,个性化定制,检查和维护以及过程优化的技术要求。
2.智能农业领域。在具有复杂应用环境和多样应用场景的农业环境中,标准化技术要求,例如特殊传感器,网络和预测数据模型,以协助农产品的生产和加工并提高农作物的产量。3.智能交通领域。 标准化交通信息数据平台和集成管理系统,从而可以对行人,车辆和道路状况等动态复杂信息进行智能处理,从而带动了智能信号灯等技术的推广。
4.智能医疗领域。 专注。疗数据,医疗诊断,医疗服务,医疗监督等方面,着重规范人工智能医疗在数据采集,数据隐身管理等方面的应用,包括医疗数据特征表示,人表达能医疗质量评估等标准。

5.智能教育领域。 规范新教学体系中与教学管理全过程有关的人工智能应用,建立以学习者为中心的教学服务,实现日常教育和终身教育的个性化。
6.智能业务领域。 主要通过复杂的应用场景来标准化商业智能领域,包括服务模型的分类和管理,业务数据的智能分析以及相应推荐引擎系统架构的设计要求
7.智能能源领域。 在能源开发利用,生产和消费的全过程中,对集成智能应用进行标准化,包括能源系统的自组织,自检,自平衡和自优化。
8.智能物流领域。 规范从计划,采购,加工,仓储和运输到物流全过程的技术和管理要求,引入智能识别,仓储,调度,跟踪,配置等方式,以提高物流效率,增强物流信息的可视性, 并优化物流配置。
9.智能金融领域。 标准化在线支付,融资信贷,投资咨询,风险管理,大数据分析和预测,数据安全性和其他应用技术,以帮助改善信贷调查,产品定价,金融资产投资研究,客户付款方式,投资咨询,客户 服务和其他服务能力。
10.智能家居领域。 标准化产品,服务和应用程序,例如智能家居硬件,智能网络,服务平台,智能软件,促进智能家居产品的互联,并有效改善智能家居在照明,监控,娱乐,健康,教育,信息,安全, 等。用户体验。

阅读全文

与人工智能数据库应用实例相关的资料

热点内容
dellwin7开机图片文件 浏览:638
linux进度条定时 浏览:619
重建路径文件 浏览:642
买房提前准备什么文件 浏览:926
cmd查看oracle版本 浏览:767
苹果用什么软件搜番号 浏览:409
app数据托管多少钱一年 浏览:907
PE系统考文件很慢 浏览:284
qt文件夹路径输入方式 浏览:773
游戏app怎么获客 浏览:721
inhealthapp连不上 浏览:611
脚本错误win10 浏览:790
mac废纸篓文件找不到 浏览:160
语音文件为什么打开是文本 浏览:945
后缀名为3ds的是什么文件 浏览:848
怎么注册台湾app 浏览:973
找图片去哪个网站 浏览:256
linux下的openvpn 浏览:887
ps存储文件怎么转成ai格式 浏览:653
psd文件该用什么工具查 浏览:15

友情链接