㈠ 无线网卡和无线上网卡,和wifi区别
无线网卡和无线上网卡和wifi区别如下:
1、从功能上区分:
无线网卡主要使用来连接无线上网的,也就是我们平时说的链接wifi上网,也就是说usb无线网卡本身不具有和网络服务商通信的功能,就是用来接收(有时也可以用来发射信号)信号的.
有时候也称usb无线网卡为无线接收器,主要用在台式电脑上,这样省去了布网线的烦恼。
无线上网卡从名称上仔细一看就会明白,首先是通过无线的,然后通过无线的目的就是来上网。
同时,想要达到上网的目的你还要去运营商的营业厅去申请办理相关的上网业务,如同我们平时说的3G无线上网或者3G无线上网卡,所以,要使用无线上网卡还需要插上一个从营业厅申请的3G卡。
2、从设备组成上来分:
USB无线网卡,使用USB无线网卡组成部分仅只有一个无线网卡,没有其他任何额外的组成部分,插在电脑的USB接口上安装上网卡驱动即可使用。
无线上网卡要达到能使用的目的必须是要有无线上网卡设备+3G卡,二者组合在一起才可以使用。
3、意思不同:
无线网卡实际上是一种终端无线网络设备,它是需要在无线局域网的无线覆盖下通过无线连接网络进行上网使用的。Wi-Fi是Wi-Fi联盟制造商的商标作为产品的品牌认证,是一个创建于IEEE802.11标准的无线局域网技术。无线上网卡指的是无线广域网卡,连接到无线广域网。
4、上网方式不同:
无线网卡和无线上网卡外观很象,但功用确大不一样,通过这一比较可见,二者虽然都可以实现无线上网功能,但其实现的方式和途径却大相径庭,所有无线网卡只能局限在已布有无线局域网的范围内。
如果要在无线局域网覆盖的范围以外,也就是通过无线广域网实现无线上网功能,电脑就要在拥有无线网卡的基础上,同时配置无线上网卡。
(1)wisun网络拓扑扩展阅读:
无线网卡的作用、功能跟普通电脑网卡一样,是用来连接到局域网上的。它只是一个信号收发的设备,只有在找到上互联网的出口时才能实现与互联网的连接,所有无线网卡只能局限在已布有无线局域网的范围内。
无线网卡就是不通过有线连接,采用无线信号进行连接的网卡。无线网卡根据接口不同,主要有PCMCIA无线网卡、PCI无线网卡、MiniPCI无线网卡、USB无线网卡、CF/SD无线网卡几类产品。
从速度来看,无线上网卡现在主流的速率为54M和108M,该性能和环境有很大的关系。
54Mbps:其WLAN传输速度一般在16-30Mbps之间,换算成MB也就是每秒传输速度在2MB-4MB左右。取其中间值3MB,这样的速度要传输100MB的文件需要35秒左右,要传输1GB的文件,则需要至少4分钟以上。
108Mbps:其WLAN传输速度一般在24-50Mbps之间,换算成MB也就是每秒传输速度在3MB-6MB左右。取其中间值4.5MB,这样的速度要传输100MB的文件需要25秒左右,要传输1GB的文件,则需要至少2分半钟以上。
无线上网卡的作用、功能相当于有线的调制解调器,也就是我们俗称的“猫”。它可以在拥有无线电话信号覆盖的任何地方,利用手机的SIM卡来连接到互联网上。
无线上网卡的作用、功能就好比无线化了的调制解调器(MODEM)。其常见的接口类型也有PCMCIA、USB、CF/SD等接口类型。
从速度来看,无线上网卡主要分为GPRS和CDMA两种。其速度也会受到墙壁等各种障碍物,其它无线信号如手机、微波炉等的干扰。
参考资料:网络-无线网卡
㈡ 无线Mesh网络技术及其应用
无线 Mesh 网络是无线局域网和移动自组织网络相结合的产物,是一种全新的网络架构.它是下一代无线网络的关键技术之一, 近几年得到了人们的广泛关注和快速发展。为了以低成本的代价实现无处不在的高速 Internet,新一代无线
Mesh 网络的发展势在必行。 新一代无线 Mesh 网络旨在能够提供高性能和高可靠性的服务。简要描述了无线 Mesh 网络技术原理、网络架构和协议,分析了其优势,对未来的应用前景进行了展望。
近几年无线网络有着突飞猛进的发展,针对不同的应用及需求涌现出了许多新的无线通信技术及标准,而无线网状网就是其中一项倍受人们关注的新技纳余术。WMN 是一种新组网技术,即网状网络。其拓扑结构是动态的,具有自组织、自愈合的功能即不需要人为干预就可以自动组成网络,且每个终端可以自由的加入或退出。在信息传递的时候通过多跳的方式将信息不断地转发直到目的终端。如果运用该技术来对无线传感器、Wi-Fi(Wireless Fidelity)、WiMAX(worldwide inter-operability for microwave access)等技术进行组网,就可以延伸它们的应用范围、强化它们的功能,从而组成无线传感器网络、提高无线友链局域网的覆盖范围、组建城域网。也因为其广阔的应用前景,从而被人们越来越关注并应用到生活与工作中。
无线 Mesh 网是低功率的多级跳点(multihop)系统,它们处理消息的方式是把信息包从一个节点传递到另一个节点,直到信息包到达目的地。点到点网络节点过滤掉所有信息包,只留下自己的信息包,与此不同的是,网状网节点接收要传给其它节点的信息包,并把它们再次传送出去。每个无线 Mesh 网络的节点可以作为接入终端,也可具有路由和信息转发功能,具有极高的组网自由度。无线 Mesh网络运行方式很象因
特网,并提供从源头到目的地的多条冗余通信路径。如果一条
路径由于硬件故障或干扰而停止工作,网状网会自动改变信
息包的路由,使它们穿过一条替代路径。
WMNs 的节点有 2 种类型:路由器或客户机,其中组成网络骨干的路由器移动性很小,他们提供网状网与其他网络(如
Internet、蜂窝网、IEEE802、传感网)连接的网关和路桥功能;客户机可以是静止或移动的,客户机间可自己组网或与网状网的路由器共同组网。
无线多跳。通过降低无线节点的发射功率,实现了节点间的多跳传输,既可有效降低节点能耗,又降低了节点间的干扰,提高了无线信道的空间复用度,从而提高了网络的容量。
自组织、自修复能力。无线网状网组网方式灵活、易于配置、可自我修复、节点呈网状分布,网络扩展性很强,可实现多点到多点的无线通信。
移动性。取决于节点的类型,要求路由节点移动性最小,客户机节点可灵活移动。
接入方式。灵活多样,可分别与 Internet、蜂窝网、传感网等共同组网。
能耗方式。通常对路由节点的耗能没有严格的限制,而对客户机节点通常要求执行功率有效的协议。
兼容性与互操作性。与现存的无线网络兼容良好,互操作性强。
从另一角度看 WMN 拓朴和架构分析,它吸收了星型与网状两种网络的优点,是对两者的一种无缝融合。而这种融合是通过在网络节点上执行 WMR(Wireless Mesh Routing)协议来完成的(见图 1)。
从图 1 中可以看出,为提供多次反射无线路由功能,在接入点和移动节点都执行 WMR 路由协议。同时为实现与 IP 的兼容,WMR 被作为一中间层协议放置在 MAC 层和IP 层之间,从而在不需要对其他协议层做太大改动的情况下便可以很好地执行 WMR 协议。这样就使得 WMR 能够较好地与现有多数应用(包括以 802.11x 代表的无线标准)兼容。
WMN 与传统无线网络相洞告滚比有许多优势
(1)可靠性大大增强
WMN 采用的网格拓扑结构避免了点对多点星型结构,如 802.11WLAN 和蜂窝网等由于集中控制方式而出现的业务汇聚、中心网络拥塞以及干扰、单点故障,从而带来额外可靠性保证成本投资。
(2)具有冲突保护机制
WMN 可对产生碰撞的链路进行标识同时可选链路与本身链路之间的夹角为钝角,减轻了链路间的干扰。
(3)简化链路设计
WMN 通常需要较短的无线链路长度,这样降低了天线的成本(传输距离与性能),另一方面,降低了发射功率,也将随之降低不同系统射频信号间的干扰和系统自干扰,最终简化了无线链路设计。
(4)网络的覆盖范围增大
由于 WR 与 IAP 的引入,终端用户可以在任何地点接入网络或与其他的节点联系,与传统的网络相比接入点的范围大大的增强,而且频谱的利用率提高,系统的容量增大。
(5)组网灵活、维护方便
由于 WMN 网络本身的组网特点,只要在需要的地方加上 WR 等少量的无线设备,即可与已有的设施组成无线的宽带接入网。WMN 网络的路由选择特性使链路中断或局部扩容和升级不影响整个网络运行,因此提高了网络的柔韧性和可行性,和传统网络相比功能更强大、更完善。
Mesh 网络在家庭、企业和公共场所等诸多领域都具有广阔的应用前景。
(1)家庭
无线 Mesh 网络的一个重要用处就是用于建立家庭无线网络。家庭式无线 Mesh 网络可以连接台式 PC 机、笔记本电脑、HDTV、DVD 播放器、游戏控制台,以及其他各种消费类电子设备,而不需要复杂的布线和安装过程。在家庭无线 Mesh 网络中,各种家用电器既是网上的用户,也作为网络基础设施的组成部分为其他设备提供接入服务。当家用电器增多时,这种组网方式可以提供更多的容量和更大的覆盖范围。无线 Mesh 网络在家庭应用中的另外一个好处是它能够支持带宽高度集中的应用,如高清晰度视频等。
(2)企业
目前,企业的无线通信系统大都采用传统的蜂窝电话式无线链路,为用户提供点到点和点到多点传输。无线 Mesh 网络则不同,它允许网络用户共享带宽,消除了目前单跳网络的瓶颈,并且能够实现网络负载的动态平衡。在无线 Mesh 网络中增加或调整 AP 也比有线 AP 更容易、配置更灵活、安装和使用成本更低。尤其是对于那些需要经常移动接入点的企业,无线 Mesh 网络的多跳结构和配置灵活将非常有利于网络拓朴结构的调整和升级。
(3)学校
校园无线网络与大型企业非常类似,但也有自己的不同特点。一是校园 WLAN 的规模大,不仅地域范围大,用户多,而且通信量也大,因为与一般企业用户相比学生会更多地使用多媒体;二是网络覆盖的要求高,网络必须能够实现室内、室外、礼堂、宿舍、图书馆和公共场所等之间的无缝漫游;三是负载平衡非常重要,由于学生经常要集中活动,当学生同时在某个位置使用网络时,就可能发生通信拥塞现象。
解决这些问题的传统作法是在室内高密度地安装 AP,而在室外安装的 AP 数量则很少。但由于校园网的用户需求变化较大,有可能经常需要增加新的 AP 或调整 AP 的部署位置, 这会带来很大的成本增加。而使用无线 Mesh 网络方式组网,不仅易于实现网络的结构升级和调整,而且能够实现室外和室内之间的无缝漫游。
(4)医院
无线 Mesh 网络还为像医院这样的公共场所提供了一种理想的联网方案。由于医院建筑物的构造密集而又复杂,一些区域还要防止电磁辐射,因此是安装无线网络难度最大的领域之一。医院的网络存在布线比较困难和对网络的健壮性要求很高的特点。采用无线 Mesh 组网则是解决这些问题的理想方案。如果要对医院无线网络拓扑进行调整,只需要移动现有的 Mesh 节点的位置或安装新的 Mesh 节点就可以了,过程非常简单,安装新的 Mesh 节点也非常方便。而无线 Mesh 的健壮性和高带宽也使它更适合于在医院中部署。
(5)旅游休闲场所
无线 Mesh 网络非常适合于在那些地理位置偏远布线困难或经济上不合算,而又需要为用户提供宽带无线 Internet 访问的地方,如旅游场所、度假村、汽车旅馆等。无线 Mesh 网络能够以最低的成本为这些场所提供宽带服务。
(6)快速部署和临时安装
对于那些需要快速部署或临时安装的地方,如展览会、交易会或灾难救援等,无线 Mesh 网络无疑是最经济有效的组网方法。比如,如果需要临时在某个地方开几天会议或办几天展览,使用无线 Mesh 网络来组网可以将成本降到最低。
WMN 不仅在家庭、企业和公共场所等诸多领域都具有广阔的应用前景,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等等领域。随着其他技术的不断更新完善,WMN 更好的与之相融合、互补从而能够扬长避短发挥出各自的优势。
㈢ 简述无线网的5大特点
无线网的概念与特点
当前网络技术飞速发展,建立网络不只是简单地将计算机在物理上连接起来,而是要合理地规划和设计整个网络系统,充分利用现在的各种资源,建立尊循标准的高效可靠,具有扩充性的网络系统。
一般来讲,凡是采用无线传输媒体的计算机网都可称为无线网。为区别于以往的低速网络,这里所指的无线网特指传输速率高于1Mb的无线计算机网。
目前,有线网和无线网的各种高速网络传输标准不断形成,智能化网络专用设备和网络管理系统的普遍应用,提高了网络性能和网络管理能力,网络容错技术更加成熟,增加了网络抗故障能力,出现了众多成熟的网络容错设备和系统,性能价格比极高的网络交换技术及相应产品,极大的提高了现有网络带宽的利应率,网络吞吐量得到显著改善,彻底改变了无线网的面貌。
现有市场形式分析:
有线组网
目前局域网互连的传输介质往往是有线介质,这些有线介质在不同的方面存在一定的问题,比如拨号线的传输速率较低,在城市里有些较好的传输线路下,速率才能达到33.6Kbps至56Kbps,租用专线的传输速率虽然可以达到64Kbps、128Kbps,但年租用费一般在2万元以上,且初装费也在万元以上,而采用双绞线、同轴电缆和光纤远程联网的方案,则存在铺设费用高,施工周期长,无法移动,变更余地小,维护成本高,覆盖面积小等诸多不利问题。
无线网络
随着通信事业的高速发展,无线网进入了一个新的天地,其有标准作基础,功能强,容易安装,组网灵活,即插即用的网络连接,可移动性等优点,提供了不受限制的应用。网络管理人员可以迅速而容易地将它加入到现有的网络中运行。 无线数据通信已逐渐成为一种重要的通信方式。
总之,无线数据通信不仅可以作为有线数据通信的补充及延伸,而且还可以与有线网络环境互为备份。在某种特殊环境下,无线通信是主要的甚至唯一的可行的通信方式。从通信方式上考虑,多元化通信方式是现代化通信网络的重要特征。
无线网的特点
下面我们将从传输方式、网络拓扑、网络接口等几个方面来描述无线网的特点。
一、 传输方式
传输方式涉及无线网采用的传输媒体、选择的频段及调制方式。
目前无线网采用的传输媒体主要有两种,即无线电波与红外线。在采用无线电波做为传输媒体的无线网依调制方式不同,又可分为扩展频谱方式与窄带调制方式。
1、扩展频谱方式
在扩展频谱方式展频谱方式中,数据基带信号的频谱被扩展至几倍-几十倍后再被搬移至射频发射出去。这一作法虽然牺牲了频带带宽,却提高了通信系统的抗干扰能力和安全性。由于单位频带内的功率降低,对其它电子设备的干扰也减小了。
采用扩展频谱方式的无线局域网一般选择所谓ISM频段,这里ISM分别取于Instrial、Scientific及Medical的第一个字母。许多工业、科研和医疗设备辐射的能量集中于该频段,例如美国ISM频段由902MHz-928MHz,2.4GHz-2.48GHz,5.725GHz-5.850GHz三个频段组成。如果发射功率及带宽辐射满足美国联邦通信委员会(FCC)的要求,则无须向FCC提出专门的申请即可使用ISM频段。
2、窄带调制方式
在窄带调制方式中,数据基带信号的频谱不做任何扩展即被直接搬移到射频发射出去。
与扩展频谱方式相比,窄带调制方式占用频带少,频带利用率高。采用窄带调制方式的无线局域网一般选用专用频段,需要经过国家无线电管理部门的许可方可使用。当然,也可选用ISM频段,这样可免去向无线电管理委员会申请。但带来的问题是,当临近的仪器设备或通信设备也在使用这一频段时,会严重影响通信质量,通信的可靠性无法得到保障。
3、红外线方式
基于红外线的传输技术最近几年有了很大发展。目前广泛使用的家电遥控器几乎都是采用红外线传输技术。做为无线局域网的传输方式,红外线的最大优点是这种传输方式不受无线电干扰,且红外线的使用不受国家无线电管理委员会的限制。然而,红外线对非透明物体的透过性极差,这导致传输距离受限。
二、网络拓扑
无线局域网的扩扑结构可归结为两类:无中心或对等式(Peer to Peer)拓扑和有中心(HUB-Based)拓扑。
1、无中心拓扑
无中心拓扑的网络要求网中任意两个站点均可直接通信。
采用这种拓扑结构的网络一般是用公用广播信道,各站点都可竞争公用信道,而信道接入控制(MAC)协议大多采用CSMA(载波监测多址接入)类型的多址接入协议。
这种结构的优点是网络抗毁性好、建网容易、且费用较低。但当网中用户数(站点数)过多时,信道竞争成为限制网络性能的要害。并且为了满足任意两个站点可直接通信,网络中站点布局受环境限制较大。因此这种拓扑结构适用于用户相对减少的工作群网络规模。
2、有中心拓扑
在中心拓扑结构中,要求一个无线站点充当中心站,所有站点对网络的访问均由其控制。
这样,当网络业务量增大时网络吞吐性能及网络时延性能的而恶化并不剧烈。由于每个站点只需在中心站覆盖范围之内就可与其它站点通信,故网络中点站布局受环境限制亦小。 此外,中心站为接入有线主干网提供了一个逻辑接入点。
有中心网络拓扑结构的弱点是抗毁性差,中心点的故障容易导致整个网络瘫痪,并且中心站点的引入增加了网络成本。
在实际应用中,无线网往往与有线主干网络结合起来使用。这时,中心站点充当无线网与有线主干网的转接器。
三、网络接口
这涉及无线网中站点从哪一层接入网络系统。一般来讲,网络接口可以选择在OSI参考模型的物理层或数据链路层。
所谓物理层接口指使用无线信道替代通常的有线信道,而物理层以上各层不变。这样做的最大优点是上层的网络操作系统及相应的驱动程序可不做任何修改。这种接口放式在使用时一般做为有线网的集线器和无线转发器以实现有线局域网间互连或扩大有线局域网的覆盖面积。
另一种接口方法是从数据链路层接入网络。这种接口方法并不沿用有线局域网的MCA协议,而采用更适合无线传输环境的MAC协议。在实现时,MAC层及其及其以下层对上层是透明的,配置相应的驱动程序来完成域上层的接口,这样可保证现有的有线局域网操作系统或应用软件可在无线局域网上正常运转。
目前,大部分无线局域网厂商都采用数据链路层接口方法。
㈣ 现代无线网络的新技术是什么
c计算机通信分两种:有线通信和无线通信
无线通信包括卫星,微波,红外等等
无线局域网(Wireless LAN)技术可以非常便捷地以无线方式连接网络设备,人们可随时、随地、随意地访问网络资源。在推动网络技术发展的同时,无线局域网也在改变着人们的生活方式。本文分析了无线局域网的优缺点极其理论基础,介绍了无线局域网的协议标准,阐述了无线局域网的体系结构,探讨了无线局域网的研究方向。
关键词 以太网 无线局域网 扩频 安全性 移动IP
一、引 言
随着无线通信技术的广泛应用,传统局域网络已经越来越不能满足人们的需求,于是无线局域网(Wireless Local Area Network,WLAN)应运而生,且发展迅速。尽管目前无线局域网还不能完全独立于有线网络,但近年来无线局域网的产品逐渐走向成熟,正以它优越的灵活性和便捷性在网络应用中发挥日益重要的作用。
无线局域网是无线通信技术与网络技术相结合的产物。从专业角度讲,无线局域网就是通过无线信道来实现网络设备之间的通信,并实现通信的移动化、个性化和宽带化。通俗地讲,无线局域网就是在不采用网线的情况下,提供以太网互联功能。
广阔的应用前景、广泛的市场需求以及技术上的可实现性,促进了无线局域网技术的完善和产业化,已经商用化的802.11b网络也正在证实这一点。随着802.11a网络的商用和其他无线局域网技术的不断发展,无线局域网将迎来发展的黄金时期。
二、无线局域网概述
无线网络的历史起源可以追溯到50年前第二次世界大战期间。当时,美国陆军研发出了一套无线电传输技术,采用无线电信号进行资料的传输。这项技术令许多学者产生了灵感。1971年,夏威夷大学的研究员创建了第一个无线电通讯网络,称作ALOHNET。这个网络包含7台计算机,采用双向星型拓扑连接,横跨夏威夷的四座岛屿,中心计算机放置在瓦胡岛上。从此,无线网络正式诞生。
1.无线局域网的优点
(1)灵活性和移动性。在有线网络中,网络设备的安放位置受网络位置的限制,而无线局域网在无线信号覆盖区域内的任何一个位置都可以接入网络。无线局域网另一个最大的优点在于其移动性,连接到无线局域网的用户可以移动且能同时与网络保持连接。
(2)安装便捷。无线局域网可以免去或最大程度地减少网络布线的工作量,一般只要安装一个或多个接入点设备,就可建立覆盖整个区域的局域网络。
(3)易于进行网络规划和调整。对于有线网络来说,办公地点或网络拓扑的改变通常意味着重新建网。重新布线是一个昂贵、费时、浪费和琐碎的过程,无线局域网可以避免或减少以上情况的发生。
(4)故障定位容易。有线网络一旦出现物理故障,尤其是由于线路连接不良而造成的网络中断,往往很难查明,而且检修线路需要付出很大的代价。无线网络则很容易定位故障,只需更换故障设备即可恢复网络连接。
(5)易于扩展。无线局域网有多种配置方式,可以很快从只有几个用户的小型局域网扩展到上千用户的大型网络,并且能够提供节点间"漫游"等有线网络无法实现的特性。
由于无线局域网有以上诸多优点,因此其发展十分迅速。最近几年,无线局域网已经在企业、医院、商店、工厂和学校等场合得到了广泛的应用。
2.无线局域网的理论基础
目前,无线局域网采用的传输媒体主要有两种,即红外线和无线电波。按照不同的调制方式,采用无线电波作为传输媒体的无线局域网又可分为扩频方式与窄带调制方式。
(1)红外线(Infrared Rays,IR)局域网
采用红外线通信方式与无线电波方式相比,可以提供极高的数据速率,有较高的安全性,且设备相对便宜而且简单。但由于红外线对障碍物的透射和绕射能力很差,使得传输距离和覆盖范围都受到很大限制,通常IR局域网的覆盖范围只限制在一间房屋内。
(2)扩频(Spread Spectrum,SS)局域网
如果使用扩频技术,网络可以在ISM(工业、科学和医疗)频段内运行。其理论依据是,通过扩频方式以宽带传输信息来换取信噪比的提高。扩频通信具有抗干扰能力和隐蔽性强、保密性好、多址通信能力强的特点。扩频技术主要分为跳频技术(FHSS)和直接序列扩频(DSSS)两种方式。
所谓直接序列扩频,就是用高速率的扩频序列在发射端扩展信号的频谱,而在接收端用相同的扩频码序列进行解扩,把展开的扩频信号还原成原来的信号。而跳频技术与直序扩频技术不同,跳频的载频受一个伪随机码的控制,其频率按随机规律不断改变。接收端的频率也按随机规律变化,并保持与发射端的变化规律一致。跳频的高低直接反映跳频系统的性能,跳频越高,抗干扰性能越好,军用的跳频系统可达到每秒上万跳。
(3)窄带微波局域网
这种局域网使用微波无线电频带来传输数据,其带宽刚好能容纳信号。但这种网络产品通常需要申请无线电频谱执照,其它方式则可使用无需执照的ISM频带。
3.无线局域网的不足之处
无线局域网在能够给网络用户带来便捷和实用的同时,也存在着一些缺陷。无线局域网的不足之处体现在以下几个方面:
(1)性能。无线局域网是依靠无线电波进行传输的。这些电波通过无线发射装置进行发射,而建筑物、车辆、树木和其它障碍物都可能阻碍电磁波的传输,所以会影响网络的性能。
(2)速率。无线信道的传输速率与有线信道相比要低得多。目前,无线局域网的最大传输速率为54Mbit/s,只适合于个人终端和小规模网络应用。
(3)安全性。本质上无线电波不要求建立物理的连接通道,无线信号是发散的。从理论上讲,很容易监听到无线电波广播范围内的任何信号,造成通信信息泄漏。
三、无线局域网协议标准
无线局域网技术(包括IEEE802.11、蓝牙技术和HomeRF等)将是新世纪无线通信领域最有发展前景的重大技术之一。以IEEE(电气和电子工程师协会)为代表的多个研究机构针对不同的应用场合,制定了一系列协议标准,推动了无线局域网的实用化。
1.IEEE802.11系列协议
作为全球公认的局域网权威,IEEE 802工作组建立的标准在局域网领域内得到了广泛应用。这些协议包括802.3以太网协议、802.5令牌环协议和802.3z100BASE-T快速以太网协议等。IEEE于1997年发布了无线局域网领域第一个在国际上被认可的协议——802.11协议。1999年9月,IEEE提出802.11b协议,用于对802.11协议进行补充,之后又推出了802.11a、802.11g等一系列协议,从而进一步完善了无线局域网规范。IEEE802.11工作组制订的具体协议如下:
(1)802.11a
802.11a采用正交频分(OFDM)技术调制数据,使用5GHz的频带。OFDM技术将无线信道分成以低数据速率并行传输的分频率,然后再将这些频率一起放回接收端,可提供25Mbit/s的无线ATM接口和10Mbit/s的以太网无线帧结构接口,以及TDD/TDMA的空中接口。在很大程度上可提高传输速度,改进信号质量,克服干扰。物理层速率可达54Mbit/s,传输层可达25Mbit/s,能满足室内及室外的应用。
(2)802.11b
802.11b也被称为Wi-Fi技术,采用补码键控(CCK)调制方式,使用2.4GHz频带,其对无线局域网通信的最大贡献是可以支持两种速率--5.5Mbit/s和11Mbit/s。多速率机制的介质访问控制可确保当工作站之间距离过长或干扰太大、信噪比低于某个门限值时,传输速率能够从11Mbit/s自动降到5.5Mbit/s,或根据直序扩频技术调整到2Mbit/s和1Mbit/s。在不违反FCC规定的前提下,采用跳频技术无法支持更高的速率,因此需要选择DSSS作为该标准的惟一物理层技术。
(3)802.11g
2001年11月,在802.11 IEEE会议上形成了802.11g标准草案,目的是在2.4GHz频段实现802.11a的速率要求。该标准将于2003年初获得批准。802.11g采用PBCC或CCK/OFDM调制方式,使用2.4GHz频段,对现有的802.11b系统向下兼容。它既能适应传统的802.11b标准(在2.4GHz频率下提供的数据传输率为11Mbit/s),也符合802.11a标准(在5GHz频率下提供的数据传输率56Mbit/s),从而解决了对已有的802.11b设备的兼容。用户还可以配置与802.11a、802.11b以及802.11g均相互兼容的多方式无线局域网,有利于促进无线网络市场的发展。
(4)其他相关协议
IEEE802工作组今后将继续对802.11系列协议进行探讨,并计划推出一系列用于完善无线局域网应用的协议,其中主要包括802.11e(定义服务质量和服务类型)、802.11f(AP间协议)、802.11h(欧洲5GHz规范)、802.11i(增强的安全性&认证)、802.11j(日本的4.9GHz规范)、802.11k(高层无线/网络测量规范)以及高吞吐量研究工作组的相关协议。
2.蓝牙规范(Bluetooth)
蓝牙规范是由SIG(特别兴趣小组)制定的一个公共的、无需许可证的规范,其目的是实现短距离无线语音和数据通信。蓝牙技术工作于2.4GHz的ISM频段,基带部分的数据速率为1Mbit/s,有效无线通信距离为10~100m,采用时分双工传输方案实现全双工传输。蓝牙技术采用自动寻道技术和快速跳频技术保证传输的可靠性,具有全向传输能力,但不需对连接设备进行定向。其是一种改进的无线局域网技术,但其设备尺寸更小,成本更低。在任意时间,只要蓝牙技术产品进入彼此有效范围之内,它们就会立即传输地址信息并组建成网,这一切工作都是设备自动完成的,无需用户参与。
3.HomeRF标准
在美国联邦通信委员会(FCC)正式批准HomeRF标准之前,HomeRF工作组于1998年为在家庭范围内实现语音和数据的无线通信制订出一个规范,即共享无线访问协议(SWAP)。该协议主要针对家庭无线局域网,其数据通信采用简化的IEEE802.11协议标准。之后,HomeRF工作组又制定了HomeRF标准,用于实现PC机和用户电子设备之间的无线数字通信,是IEEE802.11与泛欧数字无绳电话标准(DECT)相结合的一种开放标准。HomeRF标准采用扩频技术,工作在2.4GHz频带,可同步支持4条高质量语音信道并且具有低功耗的优点,适合用于笔记本电脑。
4.HyperLAN/2标准
2002年2月,ETI的宽带无线接入网络(Broadband Radio Access Networks,BRAN)小组公布了HiperLAN/2标准。HiperLAN/2标准由全球论坛(H2GF)开发并制定,在5GHz的频段上运行,并采用OFDM调制方式,物理层最高速率可达54Mbit/s,是一种高性能的局域网标准。HyperLAN/2标准定义了动态频率选择、无线小区切换、链路适配、多波束天线和功率控制等多种信令和测量方法,用来支持无线网络的功能。基于HyperRF标准的网络有其特定的应用,可以用于企业局域网的最后一部分网段,支持用户在子网之间的IP移动性。在热点地区,为商业人士提供远端高速接入因特网的服务,以及作为W-CDMA系统的补充,用于3G的接入技术,使用户可以在两种网络之间移动或进行业务的自动切换,而不影响通信。
5.无线局域网标准的比较
802.11系列协议是由IEEE制定的,目前居于主导地位的无线局域网标准。HomeRF主要是为家庭网络设计的,是802.11与DECT的结合。HomeRF和蓝牙都工作在2.4GHz ISM频段,并且都采用跳频扩频(FHSS)技术。因此,HomeRF产品和蓝牙产品之间几乎没有相互干扰。蓝牙技术适用于松散型的网络,可以让设备为一个单独的数据建立一个连接,而HomeRF技术则不像蓝牙技术那样随意。组建HomeRF网络前,必须为各网络成员事先确定一个惟一的识别代码,因而比蓝牙技术更安全。802.11使用的是TCP/IP协议,适用于功率更大的网络,有效工作距离比蓝牙技术和HomeRF要长得多。
四、无线局域网的体系架构
1.无线局域网的主要组件
(1)无线网卡。提供与有线网卡一样丰富的系统接口,包括PCMCIA、Cardbus、PCI和USB等。在有线局域网中,网卡是网络操作系统与网线之间的接口。在无线局域网中,它们是操作系统与天线之间的接口,用来创建透明的网络连接。
(2)接入点。接入点的作用相当于局域网集线器。它在无线局域网和有线网络之间接收、缓冲存储和传输数据,以支持一组无线用户设备。接入点通常是通过标准以太网线连接到有线网络上,并通过天线与无线设备进行通信。在有多个接入点时,用户可以在接入点之间漫游切换。接入点的有效范围是20~500m。根据技术、配置和使用情况,一个接入点可以支持15~250个用户,通过添加更多的接入点,可以比较轻松地扩充无线局域网,从而减少网络拥塞并扩大网络的覆盖范围。
2.无线局域网的配置方式
(1)对等模式。Ad-hoc模式。这种应用包含多个无线终端和一个服务器,均配有无线网卡,但不连接到接入点和有线网络,而是通过无线网卡进行相互通信。它主要用来在没有基础设施的地方快速而轻松地建无线局域网。
(2)基础结构模式。Infrastructure模式。该模式是目前最常见的一种架构,这种架构包含一个接入点和多个无线终端,接入点通过电缆连线与有线网络连接,通过无线电波与无线终端连接,可以实现无线终端之间的通信,以及无线终端与有线网络之间的通信。通过对这种模式进行复制,可以实现多个接入点相互连接的更大的无线网络。
五、未来的研究方向
如上所述,无线局域网技术的研究和应用方兴未艾,是目前无线通信领域乃至整个通信行业的研究热点。从无线局域网的进一步推广应用来看,未来的研究方向主要集中在安全性、移动漫游、网络管理以及与3G等其他移动通信系统之间的关系上。
1.安全性问题
IEEE802.11协议标准建议使用两种安全解决方案。一种是IEEE 802.11安全任务组(TGi)构建的安全框架--鲁棒型安全网络(RSN)。这种网络用IEEE 802.1x提供基于端口的接入控制、鉴权和密钥管理。该标准用可扩展鉴权协议(EAP)实现对用户的鉴权。鉴权服务器和用户之间使用远程鉴权拨入用户服务协议(RADIUS)进行通信,RADIUS协议在网络接入的鉴权、授权和计费(AAA)中得到广泛采用。由于IEE802.1x主要是针对有线局域网设计的,在无线局域网中使用IEE802.1x不可避免地存在漏洞。所以,尽管它对无线局域网的安全性能有很大改善,802.1x和802.11的结合仍然不能提供足够的安全。
另一种方式则是目前广泛应用于局域网络及远程接入等领域的虚拟专用网(VPN)安全技术。与802.11b标准所采用的安全技术不同,在IP网络中,VPN主要采用IPSec技术来保障数据传输的安全。对于安全性要求更高的用户,将现有的VPN安全技术与802.11b安全技术结合起来,是目前较为理想的无线局域网络的安全解决方案。
2.漫游切换问题
无线局域网的漫游问题是继安全问题之后的一个至关重要的问题。在无线网络中,如果一边使用无线局域网接入服务,一边移动接入位置,那么一旦移动终端超越子网覆盖范围,IP数据包就无法到达移动终端,正在进行的通信将被中断。为此,IETF制定了扩展IP网络移动性的系列标准。所谓移动IP,就是指在IP网络上的多个子网内均可使用同一IP地址的技术。这种技术是通过使用被称为本地代理(Home Agent)和外地代理(Foreign Agent)的特殊路由器对网络终端所处位置的网络进行管理来实现的。在移动IP系统中,可保证用户的移动终端始终使用固定的IP地址进行网络通信,不管在怎样的移动过程中皆可建立TCP连接并不会发生中断。在无线局域网系统中,广泛的应用移动IP技术可以突破网络的地域范围限制,并可克服在跨网段时使用动态主机配置协议(DHCP)方式所造成的通信中断、权限变化等问题。
3.无线网络管理问题
相对于有线网络,无线局域网具有非常独特的特性,因此必须建立相应的无线网络管理系统。除了系统结构、用户需求和典型应用等模块之外,一个好的无线网络管理系统还必须考虑以下因素:
(1)标准的网管通信方式。网管子系统通常与中央主机相连。网管子系统必须基于工业标准的管理协议(比如SNMP),这样才能监视主机和子系统之间每条链路上的状态信息,并可根据状态信息快速分析和解决出现的问题。
(2)网络监视和报告。主机必须能够监视无线网络系统中所有单元。考虑到无线网络的连接性不如有线网络那样稳定,无线网络管理系统必须监视和报告无线信号的变化以及接入点的业务类型和负载情况,还须能自动发现进入无线网络体系结构的新设备。
(3)有效地利用带宽。尽管随着新技术的发展,无线网络的可用带宽逐步增大,但还是远远小于有线局域网的带宽。因此,在实际应用中必须考虑带宽的合理使用。
4.无线局域网与3G
无线局域网不否会对第三代移动通信系统构成威胁是近年来业界关心的一个问题。实际上,无线局域网与3G采用的是截然不同的两种技术,用于满足不同的需要。与3G不同的是,无线局域网并不是一个完备的全网解决方案,而只用于满足小型用户群的需求。无线局域网与3G可以互补,因此不会对3G运营商造成威胁,运营商还可以从无线局域网和3G的共存中获得好处。NorthStream的研究表明,无线局域网与3G和GPRS的结合可增加用户的满意程度和业务量,从而增加移动运营商的利润。作为3G的一个重要补充,无线局域网可用于在诸如机场候机厅、宾馆休息室和咖啡厅等地方建立无线Internet连接。
六、结束语
经过10多年的发展,无线局域网在技术上已经日渐成熟,应用日趋广泛,无线局域网将从小范围应用进入主流应用。预计全球无线局域网接入点的销售量将从2000年的50万台稳步增长到450万台,每年的涨幅为55%。无线网卡的销售量将从2000年的约300万块增加到2005年的3400万块,每年的涨幅为53%。今后几年,无线局域网技术将更加成熟,产品性能将更加稳定,市场将持续不断地增长,价钱将持续降低,大型设备提供商将进入这个市场,大多数企业和公司将采用无线局域网进行内部网络建设。
㈤ iPad的无线网络和,蜂窝网络,有什么区别为什么这么贵呢
一、网络性质不同:
1、无线网络:
是不使用任何导线或传输电缆连接的局域网,而使用无线电波或电场与磁场作为数据传送的介质,传送距离一般只有几十米。
2、蜂窝网络:
又称移动网络(mobile network)是一种移动通信硬件架构,分为模拟蜂窝网络和数字蜂窝网络。
二、特点不同:
1、无线网络:
无线网络不收取费用,只能在由wifi的地方使用,速度较快。
2、蜂窝网络:
蜂窝网络是根据移动数据流量来收费,在任何地方都能使用,覆盖率广。
三、价格:
支持蜂窝网络的机型相对较贵,原因是机型添加了移动通讯技术,支持移动电话卡,所以价格较高。
(5)wisun网络拓扑扩展阅读
蜂窝网络组成主要有以下三部分:移动站,基站子系统,网络子系统。移动站就是我们的网络终端设备,比如手机或者一些蜂窝工控设备 。
基站子系统包括我们日常见到的移动基站(大铁塔)、无线收发设备、专用网络(一般是光纤)、无数的数字设备等等的。我们可以把基站子系统看作是无线网络与有线网络之间的转换器。
根据无线网络拓扑结构的不同,无线网络又可以划分为不同的类型。众所周知,在有线网络中,有五大网络拓扑结构,分别是总线(Bus)、令牌环(Ring)、星型(Star)、树型(Tree)和网状(Mesh)。