导航:首页 > 编程大全 > 数据库分布式开发

数据库分布式开发

发布时间:2023-09-09 21:32:44

⑴ 分布式数据库系统(DDBS)概述

一 什么是分布式数据库

分布式数据库系统是在集中式数据库系统的基础上发展来的 是数据库技术与网络技术结合的产物

分布式数据库系统有两种 一种是物理上分布的 但逻辑上却是集中的 这种分布式数据库只适宜用途比较单一的 不大的单位或部门 另一种分布式数据库系统在物理上和逻辑上都是分布的 也就是所谓联邦式分布数据库系统 由于组成联邦的各个子数据库系统是相对 自治 的 这种系统可以容纳多种不同用途的 差异较大的数据库 比较适宜于大范围内数据库的集成

分布式数据库系统(DDBS)包含分布式数据库管理系统(DDBMS)和分布式数据库(DDB)

在分布式数据库系统中 一个应用程序可以对数据库进行透明操作 数据库中的数据分别在不同的局部数据库中存储 由不同的DBMS进行管理 在不同的机器上运行 由不同的操作系统支持 被不同的通信网络连接在一起

一个分布式数据库在逻辑上是一个统一的整体 即在用户面前为单个逻辑数据库 在物理上则是分别存储在不同的物理节点上 一个应用程序通过网络的连接可以访问分布在不同地理位置的数据库 它的分布性表现在数据库中的数据不是存储在同一场地 更确切地讲 不存储在同一计算机的存储设备上 这就是与集中式数据库的区别 从用户的角度看 一个分布式数据库系统在逻辑上和集中式数据库系统一样 用户可以在任何一个场地执行全局应用 就好那些数据是存储在同一台计算机上 有单个数据库管理系统(DBMS)管理一样 用户并没有什么感觉不一样

分布式数据库中每一个数据库服务器合作地维护全局数据库的一致性

分布式数据库系统是一个客户/服务器体系结构

在系统中的每一台计算机称为结点 如果一结点具有管理数据库软件 该结点称为数据库服务器 如果一个结点为请求服务器的信息的一应用 该结点称为客户 在ORACLE客户 执行数据库应用 可存取数据信息和与用户交互 在服务器 执行ORACLE软件 处理对ORACLE数据库并发 共享数据存取 ORACLE允许上述两部分在同一台计算机上 但当客户部分和服务器部分是由网连接的不同计算机上时 更有效

分布处理是由多台处理机分担单个任务的处理 在ORACLE数据库系统中分布处理的例子如

客户和服务器是位于网络连接的不同计算机上

单台计算机上有多个处理器 不同处理器分别执行客户应用

参与分布式数据库的每一服务器是分别地独立地管理数据库 好像每一数据库不是网络化的数据库 每一个数据库独立地被管理 称为场地自治性 场地自治性有下列好处

◆系统的结点可反映公司的逻辑组织

◆由局部数据库管理员控制局部数据 这样每一个数据库管理员责任域要小一些 可更好管理

◆只要一个数据库和网络是可用 那么全局数据库可部分可用 不会因一个数据库的故障而停止全部操作或引起性能瓶颈

◆故障恢复通常在单个结点上进行

◆每个局部数据库存在一个数据字典

◆结点可独立地升级软件

可从分布式数据库的所有结点存取模式对象 因此正像非分布的局部的DBMS 必须提供一种机制 可在局部数据库中引用一个对象 分布式DBMS必须提供一种命名模式 以致分布式数据库中一个对象可在应用中唯一标识和引用 一般在层次结构的每一层实施唯一性 分布式DBMS简单地扩充层次命名模型 实施在网络上唯一数据库命名 因此一个对象的全局对象名保证在分布式数据库内是唯一

ORACLE允许在SQL语句中使用全局对象名引用分布式数据库中的模式对象(表 视图和过程) 在ORACLE中 一个模式对象的全局名由三部分组成 包含对象的模式名 对象名 数据库名 其形式如

SCOTT EMP@SALES DIVISION ACME

一个远程查询为一查询 是从一个或多个远程表中选择信息 这些表驻留在同一个远程结点

一个分布式查询可从两个或多个结点检索数据 一个分布式更新可修改两个或两个以上结点的数据

一个远程事务为一个事务 包含一人或多个远程语句 它所引用的全部是在同一个远程结点上 一个分布式事务中一个事务 包含一个或多个语句修改分布式数据库的两个或多个不同结点的数据

在分布式数据库中 事务控制必须在网络上直辖市 保证数据一致性 两阶段提交机制保证参与分布式事务的全部数据库服务器是全部提交或全部回滚事务中的语句

ORACLE分布式数据库系统结构可由ORACLE数据库管理员为终端用户和应用提供位置透明性 利用视图 同义词 过程可提供ORACLE分布式数据库系统中的位置透明性

ORACLE提供两种机制实现分布式数据库中表重复的透明性 表快照提供异步的表重复;触发器实现同步的表的重复 在两种情况下 都实现了对表重复的透明性

在单场地或分布式数据库中 所有事务都是用MIT或ROLLBACK语句中止

二 分布式数据库系统的分类

( ) 同构同质型DDBS 各个场地都采用同一类型的数据模型(譬如都是关系型) 并且是同一型号的DBMS

( )同构异质型DDBS 各个场地采用同一类型的数据模型 但是DBMS的型号不同 譬如DB ORACLE SYBASE SQL Server等

( )异构型DDBS 各个场地的数据模型的型号不同 甚至类型也不同 随着计算机网络技术的发展 异种机联网问题已经得到较好的解决 此时依靠异构型DDBS就能存取全网中各种异构局部库中的数据

三 分布式数据库系统主要特点

DDBS的基本特点

( )物理分布性 数据不是存储在一个场地上 而是存储在计算机网络的多个场地上

逻辑整体性 数据物理分布在各个场地 但逻辑上是一个整体 它们被所有用户(全局用户)共享 并由一个DDBMS统一管理

( )场地自治性 各场地上的数据由本地的DBMS管理 具有自治处理能力 完成本场地的应用(局部应用)

( )场地之间协作性 各场地虽然具有高度的自治性 但是又相互协作构成一个整体

DDBS的其他特点

( )数据独立性

( )集中与自治相结合的控制机制

( )适当增加数据冗余度

( )事务管理的分布性

四 分布式数据库系统的优点

( )更适合分布式的管理与控制

分布式数据库系统的结构更适合具有地理分布特性的组织或机构使用 允许分布在不同区域 不同级别的各个部门对其自身的数据实行局部控制 例如 实现全局数据在本地录入 查询 维护 这时由于计算机资源靠近用户 可以降低通信代价 提高响应速度 而涉及其他场地数据库中的数据只是少量的 从而可以大大减少网络上的信息传输量;同时 局部数据的安全性也可以做得更好

( )具有灵活的体系结构

集中式数据库系统强调的是集中式控制 物理数据库是存放在一个场地上的 由一个DBMS集中管理 多个用户只可以通过近程或远程终端在多用户操作系统支持下运行该DBMS来共享集中是数据库中的数据 而分布式数据库系统的场地局部DBMS的自治性 使得大部分的局部事务管理和控制都能就地解决 只有在涉及其他场地的数据时才需要通过网络作为全局事务来管理 分布式DBMS可以设计成具有不同程度的自治性 从具有充分的场地自治到几乎是完全集中式的控制

( )系统经济 可靠性高 可用性好

与一个大型计算机支持一个大型的集中式数据库在加一些进程和远程终端相比 由超级微型计算机或超级小型计算机支持的分布式数据库系统往往具有更高的性价比和实施灵活性 分布式系统比集中式系统具有更高的可靠性和更好的可用性 如由于数据分布在多个场地并有许多复制数据 在个别场地或个别通信链路发生故障时 不致于导致整个系统的崩溃 而且系统的局部故障不会引起全局失控

( )在一定条件下响应速度加快

如果存取的数据在本地数据库中 那么就可以由用户所在的计算机来执行 速度就快

( )可扩展性好 易于集成现有系统 也易于扩充

对于一个企业或组织 可以采用分布式数据库技术在以建立的若干数据库的基础上开发全局应用 对原有的局部数据库系统作某些改动 形成一个分布式系统 这比重建一个大型数据库系统要简单 既省时间 又省财力 物力 也可以通过增加场地数的办法 迅速扩充已有的分布式数据库系统

五 分布式数据库系统的劣势

( )通信开销较大 故障率高

例如 在网络通信传输速度不高时 系统的响应速度慢 与通信相关的因素往往导致系统故障 同时系统本身的复杂性也容易导致较高的故障率 当故障发生后系统恢复也比较复杂 可靠性有待提高

( )数据的存取结构复杂

一般来说 在分布时数据库中存取数据 比在集中时数据库中存取数据更复杂 开销更大

( )数据的安全性和保密性较难控制

在具有高度场地自治的分布时数据库中 不同场地的局部数据库管理员可以采用不同的安全措施 但是无法保证全局数据都是安全的 安全性问题式分布式系统固有的问题 因为分布式系统式通过通信网络来实现分布控制的 而通信网络本身却在保护数据的安全性和保密性方面存在弱点 数据很容易被窃取

分布式数据库的设计 场地划分及数据在不同场地的分配比较复杂 数据的划分及分配对系统的性能 响应速度及可用性等具有极大的影响 不同场地的通信速度与局部数据库系统的存取部件的存取速度相比 是非常慢的 通信系统有较高的延迟 在CPU上处理通信信息的代价很高 分布式数据库系统中要注意解决分布式数据库的设计 查询处理和优化 事务管理及并发控制和目录管理等问题

六 分布式数据库系统 数据分片

类型

水平分片

按一定的条件把全局关系的所有元组划分成若干不相交的子集 每个子集为关系的一个片段

垂直分片

把一个全局关系的属性集分成若干子集 并在这些子集上作投影运算 每个投影称为垂直分片

导出分片

又称为导出水平分片 即水平分片的条件不是本关系属性的条件 而是其他关系属性的条件

混合分片

以上三种方法的混合 可以先水平分片再垂直分片 或先垂直分片再水平分片 或其他形式 但他们的结果是不相同的

条件

( )完备性条件

必须把全局关系的所有数据映射到片段中 决不允许有属于全局关系的数据却不属于它的任何一个片段

( )可重构条件

必须保证能够由同一个全局关系的各个片段来重建该全局关系 对于水平分片可用并操作重构全局关系;对于垂直分片可用联接操作重构全局关系

( )不相交条件

要求一个全局关系被分割后所得的各个数据片段互不重叠(对垂直分片的主键除外)

七 分布式数据库系统 数据分配方式

( )集中式 所有数据片段都安排在同一个场地上

( )分割式

所有数据只有一份 它被分割成若干逻辑片段 每个逻辑片段被指派在一个特定的场地上

( )全复制式 数据在每个场地重复存储 也就是每个场地上都有一个完整的数据副本

( )混合式 这是一种介乎于分割式和全复制式之间的分配方式

八 分布式数据库系统 体系结构

数据分片和数据分配概念的分离 形成了 数据分布独立型 概念

数据冗余的显式控制 数据在各个场地的分配情况在分配模式中一目了然 便于系统管理

局部DBMS的独立性 这个特征也称为 局部映射透明性 此特征允许我们在不考虑局部DBMS专用数据模型的情况下 研究DDB管理的有关问题

九 分布式数据库管理系统

接受用户请求 并判定把它送到哪里 或必须访问哪些计算机才能满足该要求

访问网络数据字典 了解如何请求和使用其中的信息

如果目标数据存储于系统的多个计算机上 就必须进行分布式处理

通信接口功能 在用户 局部DBMS和其他计算机的DBMS之间进行协调

在一个异构型分布式处理环境中 还需提供数据和进程移植的支持 这里的异构型是指各个场地的硬件 软件之间存在着差别

分布式数据库管理系统

lishixin/Article/program/Oracle/201311/16998

⑵ 目前主流的分布式数据库系统实现方案有哪些

(1)方案一(数据库保存所有服务器索引信息)
全对称结构,没有中央服务器
web方案:
只从本地数据库检索符合条件的记录,给出结果
每次检索都要从本地服务器的海量数据中进行
数据库方案:
数据库保存所有服务器的索引内容
缓存命中率高的记录,减少检索时间
服务器负载分析:
服务器负载假设:
一百个结点,每结点一百人同时使用,每个结点一万条记录
web服务器:同时一百线程在本地数据库服务器检索
数据库服务器:每次接收一百个查询请求;每个请求要从一百万条索引中检索(最坏的情况);缓冲机制可以稍微减轻负担
数据更新操作:
同时更新所有数据库/只更新本地,服务器间相互同步

方案二(数据库保存本地索引及少量缓冲)
每高校作为一个结点
所有结点全对称结构,网络中没有一个中央服务器
web方案:
接收到请求时同时多线程向其它服务器同时搜索(服务器压力问题?)
数据库方案:
数据库保存本地数据
数据库保存一定量缓冲数据,
服务器负载分析:
服务器负载假设:
一百个结点,每结点一百人同时使用
则每个web服务器同时发起一万个线程向其它数据服务器搜索(oops!)
每个数据库服务器会同时接收到一万个查询请求(oops!)
采用学习过程只能少量减少查询请求和web服务器搜索线程
数据更新操作:
只更新本地

方案三(中央服务器方案一)
每高校一个结点
每结点结构相同,连接到同一个中央服务器
web方案
每个查询向中央服务器进行,由中央服务器实行检索,中央服务器返回检索结果
数据库方案
中央数据库保存所有索引信息
每结点可以只用小型数据库保存本地用户和其它信息即可
服务器负载分析:
服务器负载假设:
一百个结点,每结点一百人同时使用,每结点资料记录一万条
web服务器:同时发起一百个进程向中央数据库查询
数据库服务器(中央):同时接收一万条查询请求并返回大容量结果
数据库服务器(结点):少量工作
数据更新操作:
只更新中央服务器

方案四(中央服务器方案二)
每高校一个结点
每结点结构相同,连接到同一中央服务器
web方案:
每个查询向中央服务器进行,由中央服务器根据查询内容进行转发到结点数据库,再由结点数据库返回结果
数据库方案:
中央服务器保存各结点分类信息,根据页面请求的分类转发查询到相应服务器
服务器负载分析:
服务器负载假设:
一百个结点,每结点一百人同时使用,每结点资料记录一万条,每结点一百个类别
web服务器:同时一百个进程向中央数据库查询
数据库服务器(中央):同时接收一万条请求并转发
数据库服务器(结点):从中央服务器接收查询请求,最坏情况下每结点接收到一万条查询请求
数据更新操作:
只更新本地服务器
分类变化时更新中央服务器

⑶ 如何编写一个分布式数据库

某种程度上看来,数据库作为整个系统的核心,这句话其实并不夸张,数据库的选型关系到上层业务代码实现的方方面面,现在比较流行的架构方案是上层业务逻辑微服务化,并且结合分布式缓存,这套框架已经基本能做到上层业务的弹性扩展,但是最底层的数据存储还是很难去中心化(除非整个技术栈中去除关系型数据库(RDBMS), 全部采用 NoSQL)。所以,经常是 RDBMS 成为整个系统的瓶颈。
在长期的斗争中,大家总结出了很多方式来扩展最底层的关系型数据库:
1. 主从,一主多从,双写,通过队列暂存请求... 这些方案其实并没有解决问题,写入仍然是单点,而且对于 DBA 的挑战比较大,今天我们暂时就不讨论了。
2. 通过中间件 Sharding,常见的开源方案有: Cobar, TDDL, Vitess, Kingshard, MyCat 等,这些方案的思路是拦截 SQL 的请求通过 sharding key 和一定规则,将请求转发/广播到不同的 MySQL 实例上,从而实现水平扩展的效果,这个方案基本解决了单点写入的问题,对于业务来说整体的吞吐也上来了,看上去不错,这个方案是大多数业务遇到性能瓶颈的解决方案,但是缺点也是有的:
1)大多中间件都没有解决动态扩容的问题,多采用了静态的路由策略,扩容一般还处于人工 x2 的状态,对 DBA 要求比较高。
2)从一定程度上来说都放弃了事务,这是由于一条语句有可能会涉及到多个数据库实例,实现分布式 事务是一个比较难的事情,我们后面会详细的介绍。
3)对业务不透明,需要指定 sharding key, 心智负担较大

⑷ 什么叫分布式数据库,有什么优点和缺点

分布式数据库系统优点:

①更适合分布式的管理与控制。

分布式数据库系统版的结构更适合具有地权理分布特性的组织或机构使用,允许分布在不同区域、不同级别的各个部门对其自身的数据实行局部控制。

②具有灵活的体系结构。

分布式DBMS可以设计成具有不同程度的自治性,从具有充分的场地自治到几乎是完全集中式的控制。

③系统经济,可靠性高,可用性好。

由于数据分布在多个场地并有许多复制数据,在个别场地或个别通信链路发生故障时,不致于导致整个系统的崩溃,而且系统的局部故障不会引起全局失控。

④在一定条件下响应速度加快。

如果存取的数据在本地数据库中,那末就可以由用户所在的计算机来执行,速度就快。

⑤可扩展性好,易于集成现有系统,也易于扩充。


分布式数据库系统缺点:

①通信开销较大,故障率高。

②数据的存取结构复杂。

③数据的安全性和保密性较难控制。

大数据的分布式数据库的发展趋势如何(分布式数据库的优点)

现在大数据是一个十分火热的技术,这也使得很多人都开始关注大数据的任何动态,因为大数据在某种程度上来说能够影响我们的生活。在这篇文章中我们就给大家介绍一下大数据的分布式数据库的发展趋势,希望这篇文章能够帮助大家更好理解大数据的分布式数据库的发展趋势。

其实不论是Hadoop还是分布式数据库,技术体系上两者都已经向着计算存储层分离的方式演进。对于Hadoop来说这一趋势非常明显,HDFS存储与YARN调度计算的分离,使得计算与存储均可以按需横向扩展。而分布式数据库近年来也在遵循类似的趋势,很多数据库已经将底层存储与上层的SQL引擎进粗芹行剥离。传统的XML数据库、OO数据库、与pre-RDBMS正在消亡;新兴领域文档类数据库、图数据库、Table-Style数据库与Multi-Model数据库正在扩大自身影响;传统关系型数据库、列存储数据库、内存分析型数据库正在考虑转型。可以看到,从技术完整性与成熟度来看,Hadoop确实还处于相对早期的形态。直到今天,很多技术在很多企业应用中需要大量的手工调优才能够勉强运行。同时,Hadoop的主要应用场景一直以来面向批处理分析型业务,传统数据库在线联机处理部分不是其主要的发展方向。同时Hadoop技术由于开源生态体系过于庞大,同时参与改造的厂商太多,使得用户很难完全熟悉整个体系,这一方面大大增加了开发的复杂度,提升了用户使用的难度,另一方面则是各个厂商之间维护不同版本,使得产品的发展方向可能与开源版本差别逐渐加大。

而分布式数据库领域经历了几十年的磨练,传统RDBMS的MPP技术早已经炉火纯青,在分类众多的分布式数据库中,其主要发展方向基本可以分为“分布式联机数据库”与“分布式分析型数据库”两种。对比Hadoop与分布式数据库可以看出,Hadoop的产品发展方向定位,与分布式数据库中列存储数据戚枣库相当重叠而在高并发联机交易场景,在Hadoop中除了HBase能够勉强沾边以外,分布式数据库则占据绝对的优势。目前,从Hadoop行业的发展来看,很多厂商而是将其定位改变为数据科学与机器学习服务商。因此,从商业模式上看以Hadoop分销的商业模式基本已经宣告结束,用户已经体验到维护整个Hadoop平台的困难而不愿被强迫购买整个平台。大量用户更愿意把原来Hadoop的部件拆开灵活使用,为使用场景岩仔毕和结果买单,而非平台本身买单。另外一个细分市场——非结构化小文件存储,一直以来都是对象存储、块存储,与分布式文件系统的主战场。如今,一些新一代数据库也开始进入该领域,可以预见在未来的几年中,小型非结构化文件存储也可能成为具备多模数据处理能力的分布式数据库的战场之一。

我们在这篇文章中给大家介绍了很多有关大数据分布数据库的发展前景,通过这篇文章我们不难发现数据库的发展是一个极其重要的内容,只有搭建分布式数据库,大数据才能够更好地为我们服务。

⑹ 国内做分布式数据库开发的现状如何

基础软件创业其实我觉得是个好生意,尤其是数据库,但是前提是确实在技术上有所创新,这么一来技术壁垒就巨高,这就是护城河。如果只是去模仿 Oracle,是没有太大前途的(当然靠关系那种就另说了,反正我本人不认为这样是正确的价值观),想想人家 O 记在这个领域做了 30 年,你走人家的老路凭什么干得动人家? 目前来说我觉得之所以国内还没有太大成功的公司涌现说到底还是因为技术不行或者路子不对或者客户的历史包袱太重,拿个 Hadoop 改改就是大数据了吗?真正的 OLTP 业务敢碰吗?所以就造成了做项目挣快钱攒方案搞数据分析的公司扎堆,真正在 OLTP 端的创新没人敢碰。另外一个重要的问题就是,国内几乎没人懂开源。最近几年重要的基础软件创新都在开源社区,比如 Docker / Kubenetes (Mesos) / Spark ...凭一个公司的力量是很难跟上社区的发展速度的。国内的大多数开源项目不管是代码质量,用心程度,设计的视野上都太弱了,连最基本的英文交流都很少有开源项目注意,更不用说生态了。不过,还是有希望的,至少学术界最近几年的进展,让我们看到了在分布式 OLTP 系统 (NewSQL) 上的一些希望,而且这块在全球范围内都是一个蓝海。基于这个背景,我们创立了 PingCAP,从零开始抛开一切历史包袱去实现一个全新的数据库 TiDB,TiDB 的目标就是瞄准世界顶级的通用分布式数据库开源项目和未来的行业标准去的。虽然这个东西确实很难, 但我也不觉得我们会比硅谷的顶级基础软件公司差:),不客气的讲,我们在这个领域也远远走到了各个友商的前面,另外一方面如果不难也没有做它的价值,如果未来的数据库还是需要像现在分库分表中间件 Oracle,我觉得就太无趣了。就说一个 Cloud-Native,目前来说基本没有 OLTP 的数据库能搞定。

⑺ 如何用SQLServer建立分布式数据库

很多组织机构慢慢的在不同的服务器和地点部署SQLServer数据库——为各种应用和目的——开始考虑通过SQLServer集群的方式来合并。

将SQLServer实例和数据库合并到一个中心的地点可以减低成本,尤其是维护和软硬件许可证。此外,在合并之后,可以减低所需机器的数量,这些机器就可以用于备用。

当寻找一个备用,比如高可用性的环境,企橡纳业常常决定部署Microsoft的集群架构。我常常被问到小的集群(由较少的节点组成)SQLServer实例和作为中心解决方案的大的集群哪一种更好。在我们比较了这两个集群架构之后,我让你们自己做决定。

什么是Microsoft集群服务器

MSCS是一个WindowsServer企业版中的内建功能。这个软件支持两个或者更多服务器节点连接起来形成一个“集群”,来获得更高的可用性和对数据和应用更简便的管理。MSCS可以自动的检查到服务器或者应用的失效,并从中恢复。你也可以使用它来(手动)移动服务器之间的负载来平衡利用率以及无需停机时间来调度计划中的维护任务。

这种集群设计使用软件“心跳”来检测应用或者服务器的失效。在服务器失效的事件中,它会自动将资源(比如磁盘和IP地址)的所有权从失效的服务器转移到活动的服务器。注意还有方法可以保持心跳连接的更高的可用性,比如站点全面失效的情况下。

MSCS不要求在客户计算机上安装任何特殊软件,因此用户在灾难恢复的经历依赖于客户-服务器应用中客户一方的本质。客户的重新连接常常是透明的,因为MSCS在相同的IP地址上重启应用、文件共享等等。进一步,为了灾难恢复,集群的节点可以处于分离的、遥远的地点。

在集群服务器上的SQLServer

SQLServer2000可以配置为最多4个节点的集群,而SQLServer2005可以配置为最多8个节点的集群。当一个SQLServer实例被配置为集群之后,它的磁盘资源、IP地址和服务就形成了集群组来实现灾难恢复。

SQLServer2000允许在一个集群上安装16个实例。根据在线帮助,“SQLServer2005在一个服务器或者处理器上可以支持最多50个SQLServer实例,”但是,“只能使用25个硬盘驱动器符,因此如果你需要更多的实例,那么需要预先规划。”

注意SQLServer实例的灾难恢复阶段是指SQLServer服务开始所需要的时间,这可能从几秒钟到几分钟。如果你需要更高的可用性,考虑使用其神拆他的方法,比如logshipping和数据库镜像。

单个的大的SQLServer集群还是小的集群

下面是大的、由更多的节点组成的集群的优点:

◆更高的可用新(更多的节点来灾难恢复)。

◆更多的负载游如枣均衡选择(更多的节点)。

◆更低廉的维护成本。

◆增长的敏捷性。多达4个或者8个节点,依赖于SQL版本。

◆增强的管理性和简化环境(需要管理的少了)。

◆更少的停机时间(灾难恢复更多的选择)。

◆灾难恢复性能不受集群中的节点数目影响。

下面是单个大的集群的缺点:

◆集群节点数目有限(如果需要第9个节点怎么办)。

◆在集群中SQL实例数目有限。

◆没有对失效的防护——如果磁盘阵列失效了,就不会发生灾难恢复。

◆使用灾难恢复集群,无法在数据库级别或者数据库对象级别,比如表,创建灾难恢复集群。

虚拟化和集群

虚拟机也可以参与到集群中,虚拟和物理机器可以集群在一起,不会发生问题。SQLServer实例可以在虚拟机上,但是性能可能会受用影响,这依赖于实例所消耗的资源。在虚拟机上安装SQLServer实例之前,你需要进行压力测试来验证它是否可以承受必要的负载。

在这种灵活的架构中,如果虚拟机和物理机器集群在一起,你可以在虚拟机和物理机器之间对SQLServer进行负载均衡。比如,使用虚拟机上的SQLServer实例开发应用。然后在你需要对开发实例进行压力测试的时候,将它灾难恢复到集群中更强的物理机器上。

集群服务器可以用于SQLServer的高可用性、灾难恢复、可扩展性和负载均衡。单个更大的、由更多的节点组成的集群往往比小的、只有少数节点的集群更好。大个集群允许更灵活环境,为了负载均衡和维护,实例可以从一个节点移动到另外的节点。

java的某些项目为什么要采用分布式开发什么是分布式开发

java的某些项目为什么要采用分布式开发,分布式开发

在数据库应用程序的开发过程中,网络已走到社会的各个角落。从金融行业的银行联网、交通行业的售票系统、公安系统的全国户籍管理等等,这些企业或行业单位之间地理分布性或业务分布性,使得一个企业或行业拥有多个网络服务器,如何在这种分布式的网络环境下实现高效的数据库应用程序的开发是一个重要的问题。

分布式应用开发简单的说,是指将用户界面、控制台服务、数据库管理三个层次部署在不同的位置上。其中用户界面是客户端实现的功能,控制台服务是一个专门的服务器,数据管理是在一个专门的数据库服务器上实现的。

提示:这里的Web服务器,都是指软件(如IIS等Web服务器软件),它和Web服务器应用以及其它程序等,共同存在于服务器计算机上。

控制台CGI应用:是一个独立的控制台EXE。它在一个标准输入设备上接收客户端的请求信息,在标准输出设备上将结果返回给服务器。

阅读全文

与数据库分布式开发相关的资料

热点内容
string转jsonjs 浏览:810
如何反制清洁网络计划 浏览:500
数据库数据库实例是什么意思 浏览:756
6splus南京东路苹果专卖店报价 浏览:688
vm获取配置文件中变量 浏览:639
三星note2哪个版本好 浏览:405
c程序求5 浏览:736
文件图片去水印去斑点 浏览:538
电脑编程哪个语言最万能 浏览:915
计算机网络能传送的信息是 浏览:381
gtx950怎么升级 浏览:502
如何外网共享文件夹 浏览:665
excel2010表格工具在哪 浏览:935
路由器一个账号密码忘了怎么办 浏览:83
根据内容检索文件 浏览:569
索尼手机文件夹 浏览:739
win1010194190 浏览:722
windows文件夹命名 浏览:905
博易大师升级文件在哪里 浏览:415
ghost83手动安装教程 浏览:802

友情链接