导航:首页 > 编程大全 > 多线程实现网络爬虫

多线程实现网络爬虫

发布时间:2023-08-31 07:22:09

㈠ Python 3 网络爬虫学习建议

用py3写爬虫的话,强力推荐这本书,应该是目前最系统最完善介绍python爬虫的书。可以去图灵社区买电子版。书的内容很新也很系统,从beautifulSoup,requests到ajax,图像识别,单元测试。比起绝大多数blog零散的教程要好的多,看完书后就可以去做些实战项目,这个时候可以去github上找类似的项目借鉴下。英文版pdf:个人觉得英文版更好)中文版pdf:这本书内容比较浅,我表示赞同。但是对于新手来说,看完这本书,对于爬虫基础的应用与概念绝对有了初步的了解。其实国内有一本讲爬虫的好书,《自己动手写网络爬虫》,这本书除了介绍爬虫基本原理,包括优先级,宽度优先搜索,分布式爬虫,多线程,还有云计算,数据挖掘内容。只不过用了java来实现,但是思路是相同的。有这几个包基本上就够用了。当初学习爬虫的时候一点都不懂,甚至连爬虫是什么都不知道就在学了,但是怀着不懂装懂的精神,到现在基本上也算对爬虫了解一二。正如你所说,爬虫是个大坑!因为这不仅仅是Python的事,想要学好爬虫,需要学习:网络基础知识(post/get/抓包)、(推荐)正则表达式(re模块)、多线程/多进程、数据库(储存)。还有各种各样的问题:Python蛋疼的编码问题、遇到Ajax就要用selenium(效率低)、遇到验证码肿么办(我放弃)、需要模拟登录(我直接用cookies,在这里推荐requests,用法是:被网站禁ip等等所以,如果你是想学爬虫,那么就慢慢磨吧。但是你是想学习机器学习,网上那么多的数据集,可以不必专门学。

㈡ 如何用Python做爬虫

1)首先你要明白爬虫怎样工作。

想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。

在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。

突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。

好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。

那么在python里怎么实现呢?
很简单

import Queue

initial_page = "初始化页"

url_queue = Queue.Queue()
seen = set()

seen.insert(initial_page)
url_queue.put(initial_page)

while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break

写得已经很伪代码了。

所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。

2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。

问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。

通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example

注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]

好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。

3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...

那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?

我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)

考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。

代码于是写成

#slave.py

current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)

store(current_url);
send_to_master(to_send)

#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()

initial_pages = "www.renmingribao.com"

while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)

好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。

但是如果附加上你需要这些后续处理,比如

有效地存储(数据库应该怎样安排)

有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)

有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...

及时更新(预测这个网页多久会更新一次)

如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。

所以,不要问怎么入门,直接上路就好了:)

㈢ 除了python可以爬虫还有哪些编程语言可以爬虫

能够做网络爬虫的编程语言很多,包括PHP、Java、C/C++、Python等都能做爬虫,都能达到抓取想要的数据资源。针对不同的环境,我们需要了解他们做爬虫的优缺点,才能选出合适的开发环境。

(一)PHP
网络爬虫需要快速的从服务器中抓取需要的数据,有时数据量较大时需要进行多线程抓取。PHP虽然是世界上最好的语言,但是PHP对多线程、异步支持不足,并发不足,而爬虫程序对速度和效率要求极高,所以说PHP天生不是做爬虫的。

(二)C/C++
C语言是一门面向过程、抽象化的通用程序设计语言,广泛应用于底层开发,运行效率和性能是最强大的,但是它的学习成本非常高,需要有很好地编搏陵程知识基础,对于初学者或者编程知识不是很好地程序员来说,不是一个很好的选择。当然,能够用C/C++编写爬虫程序,足以说明能力很强,但是绝不是最正确的选择。

(三)Java
在网络爬虫方面,作为Python最大的对手Java,拥有强大的生态圈。但绝银明是Java本身很笨重,代码量大。由于爬虫与反爬虫的并告较量是持久的,也是频繁的,刚写好的爬虫程序很可能就不能用了。爬虫程序需要经常性的修改部分代码。而Java的重构成本比较高,任何修改都会导致大量代码的变动。

(四)Python
Python在设计上坚持了清晰划一的风格,易读、易维护,语法优美、代码简洁、开发效率高、第三方模块多。并且拥有强大的爬虫Scrapy,以及成熟高效的scrapy-redis分布式策略。实现同样的爬虫功能,代码量少,而且维护方便,开发效率高。

阅读全文

与多线程实现网络爬虫相关的资料

热点内容
视频课程学习有哪些app 浏览:375
铁模编程怎么学 浏览:298
数学网络研修研究问题有哪些 浏览:677
stl文件怎么打印 浏览:427
json格式变量写法 浏览:68
广州寄文件去吉林多少钱 浏览:254
苹果APP文件夹创建 浏览:903
黄米是什么app 浏览:417
word如何插入一个新文件夹 浏览:357
word文件夹前面有个符号 浏览:350
把word转换成语音 浏览:220
linuxfile文件 浏览:454
如何用网络打普通电话 浏览:463
linux进程打开的文件 浏览:134
新购u盘无法储存文件 浏览:553
5s要不要升级ios93 浏览:926
小米手机助手怎么关闭自动升级 浏览:24
外星人能不能升级到win10系统盘 浏览:652
加入java信任站点 浏览:486
好用的急救知识app 浏览:524

友情链接