Ⅰ BP神经网络模型各个参数的选取问题
样本变量不需要那么多,因为神经网络的信息存储能力有限,过多的样本会造成一些有用的信息被丢弃。如果样本数量过多,应增加隐层节点数或隐层数目,才能增强学习能力。
一、隐层数
一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增加隐层数更容易实现。对于没有隐层的神经网络模型,实际上就是一个线性或非线性(取决于输出层采用线性或非线性转换函数型式)回归模型。因此,一般认为,应将不含隐层的网络模型归入回归分析中,技术已很成熟,没有必要在神经网络理论中再讨论之。
二、隐层节点数
在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。
Ⅱ AI数学基础14——神经网络的参数和超参数
神经网络的参数( Parameters ),是指神经网络模型内部的配置变量,比如W、b,可以用训练的方式获得
神经网络的超参数( Hyper Parameters) ,是神经网络模型外部的配置参数,比如学习率a、隐藏层数L、隐藏层单元数、激活函数的选择、momentum、mini batch size、regularization parameters等等,这些参数不能从训练中得到, 必须手动设置, 并且影响最后的参数W和b的值 。
训练神经网络的过程,也是系统性调整神经网络超参数的过程;Andrew Ng说:“经常试试不同的超参数,勤于检查结果,看看有没有更好的超参数取值,你将会得到设定超参数的直觉”
Ⅲ 卷积神经网络参数解析
(1)现象:
(1-1)一次性将batch数量个样本feed神经网络,进行前向传播;然后再进行权重的调整,这样的一整个过程叫做一个回合(epoch),也即一个batch大小样本的全过程就是一次迭代。
(1-2)将训练数据分块,做成批(batch training)训练可以将多个训练数据元的loss function求和,使用梯度下降法,最小化 求和后的loss function ,进而对神经网络的参数进行优化更新
(2)一次迭代:包括前向传播计算输出向量、输出向量与label的loss计算和后向传播求loss对权重向量 w 导数(梯度下降法计算),并实现权重向量 w 的更新。
(3)优点:
(a)对梯度向量(代价函数对权值向量 w 的导数)的精确估计,保证以最快的速度下降到局部极小值的收敛性;一个batch一次梯度下降;
(b)学习过程的并行运行;
(c)更加接近随机梯度下降的算法效果;
(d)Batch Normalization 使用同批次的统计平均和偏差对数据进行正则化,加速训练,有时可提高正确率 [7]
(4)现实工程问题:存在计算机存储问题,一次加载的batch大小受到内存的影响;
(5)batch参数选择:
(5-1)从收敛速度的角度来说,小批量的样本集合是最优的,也就是我们所说的mini-batch,这时的batch size往往从几十到几百不等,但一般不会超过几千
(5-2)GPU对2的幂次的batch可以发挥更佳的性能,因此设置成16、32、64、128...时往往要比设置为整10、整100的倍数时表现更优
(6)4种加速批梯度下降的方法 [8] :
(6-1)使用动量-使用权重的 速度 而非 位置 来改变权重。
(6-2)针对不同权重参数使用不同学习率。
(6-3)RMSProp-这是Prop 的均方根 ( Mean Square ) 改进形式,Rprop 仅仅使用梯度的符号,RMSProp 是其针对 Mini-batches 的平均化版本
(6-4)利用曲率信息的最优化方法。
(1)定义:运用梯度下降算法优化loss成本函数时,权重向量的更新规则中,在梯度项前会乘以一个系数,这个系数就叫学习速率η
(2)效果:
(2-1)学习率η越小,每次迭代权值向量变化小,学习速度慢,轨迹在权值空间中较光滑,收敛慢;
(2-2)学习率η越大,每次迭代权值向量变化大,学习速度快,但是有可能使变化处于震荡中,无法收敛;
(3)处理方法:
(3-1)既要加快学习速度又要保持稳定的方法修改delta法则,即添加动量项。
(4)选择经验:
(4-1)基于经验的手动调整。 通过尝试不同的固定学习率,如0.1, 0.01, 0.001等,观察迭代次数和loss的变化关系,找到loss下降最快关系对应的学习率。
(4-2)基于策略的调整。
(4-2-1)fixed 、exponential、polynomial
(4-2-2)自适应动态调整。adadelta、adagrad、ftrl、momentum、rmsprop、sgd
(5)学习率η的调整:学习速率在学习过程中实现自适应调整(一般是衰减)
(5-1)非自适应学习速率可能不是最佳的。
(5-2)动量是一种自适应学习速率方法的参数,允许沿浅方向使用较高的速度,同时沿陡峭方向降低速度前进
(5-3)降低学习速率是必要的,因为在训练过程中,较高学习速率很可能陷入局部最小值。
参考文献:
[1] Simon Haykin. 神经网络与机器学习[M]. 机械工业出版社, 2011.
[2] 训练神经网络时如何确定batch的大小?
[3] 学习笔记:Batch Size 对深度神经网络预言能力的影响
[4] 机器学习算法中如何选取超参数:学习速率、正则项系数、minibatch size. http://blog.csdn.net/u012162613/article/details/44265967
[5] 深度学习如何设置学习率 . http://blog.csdn.net/mao_feng/article/details/52902666
[6] 调整学习速率以优化神经网络训练. https://zhuanlan.hu.com/p/28893986
[7] 机器学习中用来防止过拟合的方法有哪些?
[8] Neural Networks for Machine Learning by Geoffrey Hinton .
[9] 如何确定卷积神经网络的卷积核大小、卷积层数、每层map个数
[10] 卷积神经网络的卷积核大小、卷积层数、每层map个数都是如何确定下来的呢?
Ⅳ sklearn 神经网络 MLPClassifier简单应用与参数说明
MLPClassifier是一个监督学习算法,下图是只有1个隐藏层的MLP模型 ,左侧是输入层,右侧是输出层。
上图的整体结构可以简单的理解为下图所示:
MLP又名多层感知机,也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐藏层,如果没有隐藏层即可解决线性可划分的数据问题。最简单的MLP模型只包含一个隐藏层,即三层的结构,如上图。
从上图可以看到,多层感知机的层与层之间是全连接的(全连接的意思就是:上一层的任何一个神经元与下一层的所有神经元都有连接)。多层感知机最底层是输入层,中间是隐藏层,最后是输出层。
输入层没什么好说,你输入什么就是什么,比如输入是一个n维向量,就有n个神经元。
隐藏层的神经元怎么得来?首先它与输入层是全连接的,假设输入层用向量X表示,则隐藏层的输出就是
f(W1X+b1),W1是权重(也叫连接系数),b1是偏置,函数f 可以是常用的sigmoid函数或者tanh函数:
最后就是输出层,输出层与隐藏层是什么关系?其实隐藏层到输出层可以看成是一个多类别的逻辑回归,也即softmax回归,所以输出层的输出就是softmax(W2X1+b2),X1表示隐藏层的输出f(W1X+b1)。
MLP整个模型就是这样子的,上面说的这个三层的MLP用公式总结起来就是,函数G是softmax
因此,MLP所有的参数就是各个层之间的连接权重以及偏置,包括W1、b1、W2、b2。对于一个具体的问题,怎么确定这些参数?求解最佳的参数是一个最优化问题,解决最优化问题,最简单的就是梯度下降法了(sgd):首先随机初始化所有参数,然后迭代地训练,不断地计算梯度和更新参数,直到满足某个条件为止(比如误差足够小、迭代次数足够多时)。这个过程涉及到代价函数、规则化(Regularization)、学习速率(learning rate)、梯度计算等。
下面写了一个超级简单的实例,训练和测试数据是mnist手写识别数据集:
from sklearn.neural_network import MLPClassifier
import gzip
import pickle
with gzip.open('./mnist.pkl.gz') as f_gz:
train_data,valid_data,test_data = pickle.load(f_gz)
clf = MLPClassifier(solver='sgd',activation = 'identity',max_iter = 10,alpha = 1e-5,hidden_layer_sizes = (100,50),random_state = 1,verbose = True)
clf.fit(train_data[0][:10000],train_data[1][:10000])
print clf.predict(test_data[0][:10])
print(clf.score(test_data[0][:100],test_data[1][:100]))
print(clf.predict_proba(test_data[0][:10]))
参数说明:
参数说明:
1. hidden_layer_sizes :例如hidden_layer_sizes=(50, 50),表示有两层隐藏层,第一层隐藏层有50个神经元,第二层也有50个神经元。
2. activation :激活函数,{‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, 默认relu
- identity:f(x) = x
- logistic:其实就是sigmod,f(x) = 1 / (1 + exp(-x)).
- tanh:f(x) = tanh(x).
- relu:f(x) = max(0, x)
3. solver: {‘lbfgs’, ‘sgd’, ‘adam’}, 默认adam,用来优化权重
- lbfgs:quasi-Newton方法的优化器
- sgd:随机梯度下降
- adam: Kingma, Diederik, and Jimmy Ba提出的机遇随机梯度的优化器
注意:默认solver ‘adam’在相对较大的数据集上效果比较好(几千个样本或者更多),对小数据集来说,lbfgs收敛更快效果也更好。
4. alpha :float,可选的,默认0.0001,正则化项参数
5. batch_size : int , 可选的,默认’auto’,随机优化的minibatches的大小batch_size=min(200,n_samples),如果solver是’lbfgs’,分类器将不使用minibatch
6. learning_rate :学习率,用于权重更新,只有当solver为’sgd’时使用,{‘constant’,’invscaling’, ‘adaptive’},默认constant
- ‘constant’: 有’learning_rate_init’给定的恒定学习率
- ‘incscaling’:随着时间t使用’power_t’的逆标度指数不断降低学习率learning_rate_ ,effective_learning_rate = learning_rate_init / pow(t, power_t)
- ‘adaptive’:只要训练损耗在下降,就保持学习率为’learning_rate_init’不变,当连续两次不能降低训练损耗或验证分数停止升高至少tol时,将当前学习率除以5.
7. power_t: double, 可选, default 0.5,只有solver=’sgd’时使用,是逆扩展学习率的指数.当learning_rate=’invscaling’,用来更新有效学习率。
8. max_iter: int,可选,默认200,最大迭代次数。
9. random_state:int 或RandomState,可选,默认None,随机数生成器的状态或种子。
10. shuffle: bool,可选,默认True,只有当solver=’sgd’或者‘adam’时使用,判断是否在每次迭代时对样本进行清洗。
11. tol:float, 可选,默认1e-4,优化的容忍度
12. learning_rate_int:double,可选,默认0.001,初始学习率,控制更新权重的补偿,只有当solver=’sgd’ 或’adam’时使用。
14. verbose : bool, 可选, 默认False,是否将过程打印到stdout
15. warm_start : bool, 可选, 默认False,当设置成True,使用之前的解决方法作为初始拟合,否则释放之前的解决方法。
16. momentum : float, 默认 0.9,动量梯度下降更新,设置的范围应该0.0-1.0. 只有solver=’sgd’时使用.
17. nesterovs_momentum : boolean, 默认True, Whether to use Nesterov’s momentum. 只有solver=’sgd’并且momentum > 0使用.
18. early_stopping : bool, 默认False,只有solver=’sgd’或者’adam’时有效,判断当验证效果不再改善的时候是否终止训练,当为True时,自动选出10%的训练数据用于验证并在两步连续迭代改善,低于tol时终止训练。
19. validation_fraction : float, 可选, 默认 0.1,用作早期停止验证的预留训练数据集的比例,早0-1之间,只当early_stopping=True有用
20. beta_1 : float, 可选, 默认0.9,只有solver=’adam’时使用,估计一阶矩向量的指数衰减速率,[0,1)之间
21. beta_2 : float, 可选, 默认0.999,只有solver=’adam’时使用估计二阶矩向量的指数衰减速率[0,1)之间
22. epsilon : float, 可选, 默认1e-8,只有solver=’adam’时使用数值稳定值。
属性说明:
- classes_:每个输出的类标签
- loss_:损失函数计算出来的当前损失值
- coefs_:列表中的第i个元素表示i层的权重矩阵
- intercepts_:列表中第i个元素代表i+1层的偏差向量
- n_iter_ :迭代次数
- n_layers_:层数
- n_outputs_:输出的个数
- out_activation_:输出激活函数的名称。
方法说明:
- fit(X,y):拟合
- get_params([deep]):获取参数
- predict(X):使用MLP进行预测
- predic_log_proba(X):返回对数概率估计
- predic_proba(X):概率估计
- score(X,y[,sample_weight]):返回给定测试数据和标签上的平均准确度
-set_params(**params):设置参数。
Ⅳ 神经网络算法中,参数的设置或者调整,有什么方法可以采用
若果对你有帮助,请点赞。
神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。 然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。
而在寻解过程中,步长太大,就会搜索得不仔细,可能跨过了优秀的解,而步长太小,又会使寻解过程进行得太慢。因此,步长设置适当非常重要。
学习率对原步长(在梯度下降法中就是梯度的长度)作调整,如果学习率lr = 0.1,那么梯度下降法中每次调整的步长就是0.1*梯度,
而在matlab神经网络工具箱里的lr,代表的是初始学习率。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。
机制如下:
if newE2/E2 > maxE_inc %若果误差上升大于阈值
lr = lr * lr_dec; %则降低学习率
else
if newE2 < E2 %若果误差减少
lr = lr * lr_inc;%则增加学习率
end
详细的可以看《神经网络之家》nnetinfo里的《[重要]写自己的BP神经网络(traingd)》一文,里面是matlab神经网络工具箱梯度下降法的简化代码
若果对你有帮助,请点赞。
祝学习愉快
Ⅵ 神经网络参数如何确定
神经网络各个网络参数设定原则:
①、网络节点 网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点,即构成一个7-5-1 BP神经网络模型。在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。
②、初始权值的确定 初始权值是不应完全相等的一组值。已经证明,即便确定 存在一组互不相等的使系统误差更小的权值,如果所设Wji的的初始值彼此相等,它们将在学习过程中始终保持相等。故而,在程序中,我们设计了一个随机发生器程序,产生一组一0.5~+0.5的随机数,作为网络的初始权值。
③、最小训练速率 在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。该值一般取0.9。
④、动态参数 动态系数的选择也是经验性的,一般取0.6 ~0.8。
⑤、允许误差 一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。
⑥、迭代次数 一般取1000次。由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。
⑦、Sigmoid参数 该参数调整神经元激励函数形式,一般取0.9~1.0之间。
⑧、数据转换。在DPS系统中,允许对输入层各个节点的数据进行转换,提供转换的方法有取对数、平方根转换和数据标准化转换。
(6)神经网络参数选取扩展阅读:
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
1.生物原型
从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
2.建立模型
根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
3.算法
在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。