❶ matlab神经网络43个案例分析.pdf
哥们, 这书还真没搜到PDF电子版的, 估计人家就是想用来卖钱的,版权意识特么强。专 这么厚的书,又全属是干货,才32块,很便宜了,真想要学习,推荐买一本,亚马逊,当当,京东上都有卖。不过就算没买,到神经网络之家、matlabsky、数学中国、matlab中文论坛等一些免费论坛看看贴,一样学习。希望对你有帮助。
❷ 《Python与量化投资从基础到实战》pdf下载在线阅读,求百度网盘云资源
《Python与量化投资》(王小川)电子书网盘下载免费在线阅读
资源链接:
链接:
书名:Python与量化投资
作者:王小川
豆瓣评分:6.8
出版社:电子工业出版社
出版年份:2018-3
页数:424
内容简介:
本书主要讲解如何利用Python进行量化投资,包括对数据的获取、整理、分析挖掘、信号构建、策略构建、回测、策略分析等。本书也是利用Python进行数据分析的指南,有大量的关于数据处理分析的应用,并将重点介绍如何高效地利用Python解决投资策略问题。本书分为Python基础和量化投资两大部分:Python基础部分主要讲解Python软件的基础、各个重要模块及如何解决常见的数据分析问题;量化投资部分在Python基础部分的基础上,讲解如何使用优矿(uqer.io)回测平台实现主流策略及高级定制策略等。
本书可作为专业金融从业者进行量化投资的工具书,也可作为金融领域的入门参考书。在本书中有大量的Python代码、Python量化策略的实现代码等,尤其是对于量化策略的实现代码,读者可直接自行修改并获得策略的历史回测结果,甚至可将代码直接实盘应用,进行投资。
作者简介:
王小川,华创证券研究所金融工程高级分析师,国内知名MATLAB、Python培训专家,MATLABSKY创始人之一,人大经济论坛CDA课程Python金牌讲师。从事量化投资相关的工作,承担了部分高校的统计课程教学任务,长期研究机器学习在统计学中的应用,精通MATLAB、Python、SAS等统计软件,热衷于数据分析和数据挖掘工作,有着扎实的理论基础和丰富的实战经验。著有《MATLAB神经网络30个案例分析》和《MATLAB神经网络43个案例分析》。
陈杰,华创证券研究所金融工程团队负责人,拥有CFA、FRM资格。从2009年开始从事量化开发工作。在入职华创之前,曾担任申万宏源研究所金融工程首席分析师。
卢威,华创证券研究所金融工程分析师,前优矿网量化分析师,为优矿网资深用户,在优矿网分享过多篇高质量的量化研究报告,擅长使用Python进行量化投资研究。
刘昺轶,上海交通大学工学硕士,研究方向为断裂力学、流体力学,擅长Python编程、统计建模与Web开发,现为量化投资界新兵,正在快速成长。
秦玄晋,上海对外经贸大学会计学硕士,有两年量化投资经验,研究方向为公司金融。
苏博,上海财经大学金融信息工程硕士,主要研究方向为金融大数据分析。
徐晟刚,复旦大学西方经济学硕士,数理功底深厚,热爱编程与策略研究,精通Python、MATLAB等编程语言,有3年金融工程策略研究经验,擅长择时和事件类策略。
❸ 用MATLAB建立bp神经网络模型,求高手,在线等
Matlab神经网络工具箱提供了一系列用于建立和训练bp神经网络模型的函数命令,很难一时讲全。下面仅以一个例子列举部分函数的部分用法。更多的函数和用法请仔细查阅Neural Network Toolbox的帮助文档。
例子:利用bp神经网络模型建立z=sin(x+y)的模型并检验效果
%第1步。随机生成200个采样点用于训练
x=unifrnd(-5,5,1,200);
y=unifrnd(-5,5,1,200);
z=sin(x+y);
%第2步。建立神经网络模型。其中参数一是输入数据的范围,参数二是各层神经元数量,参数三是各层传递函数类型。
N=newff([-5 5;-5 5],[5,5,1],{'tansig','tansig','purelin'});
%第3步。训练。这里用批训练函数train。也可用adapt函数进行增长训练。
N=train(N,[x;y],z);
%第4步。检验训练成果。
[X,Y]=meshgrid(linspace(-5,5));
Z=sim(N,[X(:),Y(:)]');
figure
mesh(X,Y,reshape(Z,100,100));
hold on;
plot3(x,y,z,'.')
❹ MATLAB神经网络30个案例分析的图书目录
第1章 P神经网络的数据分类——语音特征信号分类
第2章 BP神经网络的非线性系统建模——非线性函数拟合
第3章 遗传算法优化BP神经网络——非线性函数拟合
第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优
第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模
第6章 PID神经元网络解耦控制算法——多变量系统控制
第7章 RBF网络的回归——非线性函数回归的实现
第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测
第9章 离散Hopfield神经网络的联想记忆——数字识别
第10章 离散Hopfield神经网络的分类——高校科研能力评价
第11章 连续Hopfield神经网络的优化——旅行商问题优化计算
第12章 SVM的数据分类预测——意大利葡萄酒种类识别
第13章 SVM的参数优化——如何更好的提升分类器的性能
第14章 SVM的回归预测分析——上证指数开盘指数预测
第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测
第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测
第17章SOM神经网络的数据分类——柴油机故障诊断
第18章Elman神经网络的数据预测——电力负荷预测模型研究
第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断
第20章 神经网络变量筛选——基于BP的神经网络变量筛选
第21章 LVQ神经网络的分类——乳腺肿瘤诊断
第22章 LVQ神经网络的预测——人脸朝向识别
第23章 小波神经网络的时间序列预测——短时交通流量预测
第24章 模糊神经网络的预测算法——嘉陵江水质评价
第25章 广义神经网络的聚类算法——网络入侵聚类
第26章 粒子群优化算法的寻优算法——非线性函数极值寻优
第27章 遗传算法优化计算——建模自变量降维
第28章 基于灰色神经网络的预测算法研究——订单需求预测
第29章 基于Kohonen网络的聚类算法——网络入侵聚类
第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类
❺ matlab 神经网络
net=newff(pr,[3,2],{'logsig','logsig'}); %创建 一个bp 神经网络
net.trainParam.show = 10; %显示训练迭代过程
net.trainParam.lr = 0.05; %学习速率0,05
net.trainParam.goal = 1e-10; %训练精度
net.trainParam.epochs = 50000; %最大训练次数
net = train(net,p,goal); %训练
结果要么接近于1 ,要么就是0,就这俩类啊,这就是分类结果;
每次都有些差异 很正常,只要不大
❻ MATLAB神经网络30个案例分析的介绍
《MATLAB神经网络30个案例分析》是史峰、王小川、郁磊、李洋编著的一本图书。该书是MATLAB中文论坛神经网络版块数千个帖子的总结,充分强调“案例实用性、程序可模仿性”。所有案例均来自于论坛会员的切身需求,保证每一个案例都与实际课题相结合。
❼ matlab神经网络43个案例分析第十七章基于SVM的信息粒化运行问题
代码你修改过吗,抄没有修改过、用袭的又是原版的SVMLIM工具箱的话,运行应该是无错的,因为所有的案例代码都经过校正。
维数不一致,可能是指low_predict 和Low'的维度不一致,或者是error矩阵的维数设置错了。
SVM的主要思想可以概括为两点:⑴它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而 使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。