㈠ 系统分析方法与步骤,和模型建立
上面那个人的回答好搞笑= =
简单来说,包括四个部分:建立概念模型,建立定量模型,模型检验,模型应用。
建立生态数学模型的方法一般认为至少有两种途径:
一种是分室方法,用以研究生态系统中各分室的物质与能量的流动,并给出定量的表示。
一种是实验组成成分法,主要用于复杂生态系统的生态过程(如捕食,竞争等)的分析。
可以概括如下:
模型准备 首先要明确地定义所研究的问题,确定建模目的,确定系统边界,确定模型的组分(输入和输出变量,初始和驱动变量,参数,时空尺度),建立流程图。了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料.
模型假设 根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.
模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏.
建立定量模型(或概念模型的定量化): 选择模型类型,建立模型(确定变量间的函数关系), 参数估计和校准(calibration),编写计算机程序,模型确认(model verification):仔细检查数学公式和计算机程序,撰写模型文档资料。
模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.
模型分析 对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等.
模型检验 把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.
模型时空延扩:把建立好的模型在时间和空间尺度进行扩展
模型应用: 应用的方式自然取决于问题的性质和建模的目的。
模型运行和评价 Levins(1966)曾提出组建数学模型的三条标准:
⑴真实性,模型的数学描述要符合生态系统实际;
⑵精确性,是指模型的预测值与实际值之间的差异程度,
⑶普遍性,即模型的适用范围和广度。
实际中,一个模型要同时满足这三条标准是十分困难的,Walters对此做了较精辟的论述,同时还介绍了两个与真实性和普遍性有关的指标,即分辩率(resolution)和完整性(wholeness)。这两个概念分别由Bledsoe和Jamieson(1969)及Holling(1966)提出的。
总之,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班,在实际建模过程中可以灵活采取。