导航:首页 > 编程大全 > 大数据神经网络

大数据神经网络

发布时间:2023-07-09 23:45:13

大数据人工智能培训

How:出于兴趣而非需求,自学人工智能的方法论
人们可以对自己从哪儿来、到哪儿去感兴趣,去了解柏拉图、维特根斯坦和齐泽克,了解朴素唯物与机械主义,但并不需要成为哲学家。
如果你并非为了成为研究者,只是出于兴趣学习人工智能,完全不必被铺天盖地的代码困住手脚,只需遵循以下原则:
1、明确内涵和现实
每个人都知道人工智能的目标是「实现与人类相似的智能」,当下的我们处在哪个阶段?已经取得了哪些成果?
人工智能早已进入我们的生活,搜索引擎的排序、美颜相机的美化效果、今日头条等信息流推荐类内容产品,全部都是当下的人工智能应用。
虽然与思考和智能相去甚远、被称作「弱人工智能」,它依然能比人类更高效的完成特定任务。除了这些互联网领域的应用,人脸识别验票闸机、医院的叫号系统这类行业应用,甚至港口管理、油田预测、新药研发,通通都有弱人工智能的身影。
如果提起人工智能,出现在你脑中的是 Samantha、Wall-E 或是终结者这些机器人形象,恐怕需要更近一步了解现实。
这些应用如何实现?为什么能实现?
没有任何学科建立在空谈的基础上,人工智能也不例外。
接下来,我们需要——
2、理解「黑话」
机器学习、深度学习、监督学习、计算机视觉、神经网络、RNN……它们是什么?和人工智能有什么关系?
如果你听说过或是了解以上名词的含义,恭喜你,你已经踏入了人工智能的大门。
这些名词就像是历史教科书上的事件名,或是数学中的定理,了解它们的内涵、探寻它们之间的关系,能帮助你找到这门学科的层次和边界。
比如:
「机器学习」、「深度学习」、「监督学习」是人工智能得以实现的方式,其中「深度学习」属于「机器学习」的分支,是以超过 8 层的「神经网络」为标志的模型训练方法;
「监督学习」则是从输入数据是否带有标签的角度对「机器学习」进行划分,除此之外还有「无监督学习」和「半监督学习」;
RNN 则是「神经网络」的分支,即「循环神经网络」……
那,模型、数据、标签又是什么?
顺着这些「黑话」和它们关联的「黑话」,你会渐渐理解人工智能的能做什么、不能做什么,为什么会出现某些现象(如 AlphaGo),以及接下来会发生什么。
还有很重要的一点——
3、抛弃想象
想象宇宙中的其他文明,想象一个由机器控制的社会,想象一个为爱落泪的机器人。想象给了我们无限可能,是人类最宝贵的能力之一,不过我们的世界依然建立在「真实」之上。把「想象」留给艺术,把「真实」留给科学。
What:我们该怎么做?
有了方法论,接下来当然是……获取优质的信息。
1、课程类
经典的系统课程有很多,例如 Andrew Ng 的斯坦福机器学习课程等等,答案里也有很多推荐质量相当高,在此不多做赘述。
除了学院派系统课程,很多媒体或内容平台上也有工业界人工智能专家的「公开课」。这些「公开课」更类似于讲座,有时是对现状的思考、总结,有时会针对人工智能的某一现实痛点展开。如果上一节的「黑话」过关,可以相当轻松的学到不少书本上没有的知识,以及他人的思考沉淀(这部分相当宝贵),很适合对某一领域感兴趣的人研读。
2、机构、学术会议及论文
人工智能领域是高度依赖学术界,并保留有非常强学术传统的领域。
如面向 CV 领域的视觉与学习青年学者研讨会(Valse),面向NLP领域的中文人工智能学会等,这些学会机构除了定期举办公开讲座,同时会会不定期的发布相关内容。
以及这些学会机构往往也会举办暑期学校等培训课程,质量较高,对细分领域感兴趣不妨了解课程构成后报名学习。
论文也是一个不错的学习途径,知网可以搜索论文购买阅读。
以及人工智能领域是一个高度信息流通的学科,如果英文过关,不妨前往 arXiv.org阅读英文论文。
3、媒体及社交媒体
除了学术熏陶,新鲜新闻资讯可以帮助我们了解当下、提供启发。
目前中文领域有不少细分媒体专注人工智能领域,一些科技媒体的人工智能子版块质量也相当不错。
以及不少研究者在微博、微信等社交媒体上也相当活跃,同时知乎也有不少人工智能大 V 正在活跃,可以根据自己感兴趣的方向进行关注。
4、书籍
「西瓜书」《机器学习》,李航老师的《统计学习方法》,「三驾马车」巨著《深度学习》,都是相当经典的入门书。
太难了看不懂?《图解深度学习》、《科学的极致|漫谈人工智能》、《Python神经网络编程》这些向科普方向倾斜的书籍也不错哦。
Why:真正的知识都是免费的
说了这么多、推荐了这么多,点赞、收藏对于一个人的自学旅程来说,连开始都算不上。
重要的是去看、去思考、去实践,远比做出一个「我想要」的姿态重要得多。
寻求知识的道路异常艰辛,在此引用汪丁丁教授的一段话作为结尾:
「一流的知识只能免费,这是因为它只吸引少数能够理解它的人。这些人是最可宝贵的……他们投入的理解力和伴随着理解一流知识的艰辛,价值远远超过任何付费知识的市场价格。」
愿我们都有与一流知识相配的美德。

❷ 神经网络、社交网络、大数据分析、语义网等 计算机方向。哪些数学要求更高 算法更多

深度学习对于数学要求高一些,当然我指的是编写底层代码

❸ 大数据技术有哪些应用表现形式

1、数据剖析及发掘


数据计算及剖析主要是根据存储的海量数据进行普通的剖析和分类汇总,以满足大多数常见的剖析需求。数据发掘一般没有预先设定好的主题,主要是在现有数据上面进行根据各种算法的计算,然后起到预测的效果,完成高档其他数据剖析的需求,丰富的历史数据是数据发掘的先决条件。


2、机器学习


监督式学习算法是从带标签(标注)的训练样本中树立的训练样本中树立形式,并依此推测新的数据标签的算法。比如回归、神经网络、决策树、支持向量机、贝叶斯、随机森林。无监督式学习算法是在学习时并不知道其分类成果,意图是去对原始材料进行分类,以便了解材料内部结构的算法。比如聚类、主成分剖析、线性判别剖析降维。


3、数据仓库


从企业视点来说,无论是数据库、数据仓库还是大数据都是处理不同需求、处理不同级别数据量的技能,它们之间并无冲突。针对不同需求和现状进行技能选择,各种技能相互弥补、相互协作。现在阶段关于大部分企业来说,想要展开一个全新的大数据项目似乎无从下手。


4、数据安全


大数据蕴藏着价值信息,但数据安全面临着严峻挑战。一方面,大数据自身的安全防护存在漏洞。虽然云计算对大数据供给了便当,但对大数据的安全操控力度不够,API拜访权限操控以及密钥出产,存储和办理方面的缺乏都可能造成数据走漏。另一方面,在用数据发掘和数据剖析等大数据技能获取价值信息的同时,攻击者也在利用这些大数据技能进行攻击。


关于大数据技术有哪些应用表现形式,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

阅读全文

与大数据神经网络相关的资料

热点内容
ps能查到源文件吗 浏览:702
文件路径在哪找 浏览:962
word里怎么加向下箭头 浏览:162
骗钱app有哪些 浏览:202
微信sdk初始化失败 浏览:180
有哪些免费的录制视频app 浏览:330
java反射获取返回值 浏览:91
java随机生成几位数字 浏览:420
电脑中毒无法连接网络 浏览:371
android通知栏文件下载 浏览:81
爱普生p50清零程序 浏览:599
音乐盒下载的文件在哪里 浏览:125
extjs4精简版 浏览:521
1inux删除文件 浏览:576
cad为什么拖拽文件打不开呢 浏览:827
java认证考试题库看不懂 浏览:738
如何将三列20行数据做成柱状图 浏览:995
4s61越狱版本可以升级吗 浏览:213
图库的文件夹在哪里 浏览:946
delphi程序自身的版本号 浏览:644

友情链接