A. 关于神经网络,蚁群算法和遗传算法
神经网络来并行性和自适应性很强,应源用领域很广,在任何非线性问题中都可以应用,如控制、信息、预测等各领域都能应用。
蚁群算法最开始应用于TSP问题,获得了成功,后来又广泛应用于各类组合优化问题。但是该算法理论基础较薄弱,算法收敛性都没有得到证明,很多参数的设定也仅靠经验,实际效果也一般,使用中也常常早熟。
遗传算法是比较成熟的算法,它的全局寻优能力很强,能够很快地趋近较优解。主要应用于解决组合优化的NP问题。
这三种算法可以相互融合,例如GA可以优化神经网络初始权值,防止神经网络训练陷入局部极小且加快收敛速度。蚁群算法也可用于训练神经网络,但一定要使用优化后的蚁群算法,如最大-最小蚁群算法和带精英策略。
B. 如何用神经网络遗传算法求极值
===============学习神经网络可以到<神经网络之家>================
可以先用matlab神经网络工具箱训练网络,当网络训练好之后,把网络存起来.
然后编写遗传算法,你知道,遗传算法是每代不断迭代的,然后每代会根据适应度决定是否进入下一代,这里的适应度你就用sim(net,x)得到的值的倒数(或者类似的)作为适应度,然后其它就和遗传算法没什么两样了.最后得到的最优解, 就是网络的最优解. 也就是你要的结果了.
不过兄弟,这想法很牛B,很值得鼓励这样的想法.但我不得不说两句,从实际角度来说,这样的实现没有太大的意义. 你的目的就是想从数据中找到Y最小的时候,X的什么值, 但数据上毕竟只是数据,不管你怎么绕,透露出来的信息还是有限的,不管怎么绕,其实数据能提供最大限度的信息就是:在Y=10.88时,即X1=25,X2=24....X6=1.5时,Y是最小值的, 这是数据能提供的最大限度的信息,你再怎么绕, 其实当你懂得神经网络的深层原理时,你会发现,你的方案并没能挖掘出更优的解(因为数据的信息是有限的),这只是把自己绕晕了
不过能有这样的想法,兄弟肯定是个学习的好材料,加油.
===============学习神经网络可以到<神经网络之家>================
C. 神经网络遗传算法函数极值寻优
对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。本文用神经网络遗传算法寻优如下非线性函数极值,函数表达式为
函数图形如下图1所示。
从函数方程和图形可以看出,该函数的全局最小值为0,对应的坐标为(0,0)。虽然从函数方程和图形中很容易找出函数极值及极值对应坐标,但是在函数方程未知的情况下函数极值及极值对应坐标就很难找到。
神经网络遗传算法函数极值寻优主要分为BP神经网络训练拟合和遗传算法极值寻优两步,算法流程如下图2所示。
神经网络训练拟合根据寻优函数的特点构建合适的BP神经网络,用非线性函数的输出数据训练BP网络,训练后的BP神经网络就可以预测函数输出。遗传算法极值寻优把训练后的BP神经网络预测结果作为个体适应度值,通过选择、交叉和变异操作寻找函数的全局最优值及对应输入值。
本文根据非线性函数有2个输入参数、1个输出参数,确定BP神经网络结构为2-5-1.取函数的4 000组输入输出数据,从中随机选取3 900组数据训练网络,100组数据测试网络性能,网络训练好后用于预测非线性函数输出。
遗传算法中个体采用实数编码,由于寻优函数只有2个输入参数,所以个体长度为2。个体适应度值为BP神经网络预测值,适应度值越小。交叉概率为0.4,变异概率为0.2。
用函数输入输出数据训练BP神经网络,使训练后的网络能够拟合非线性函数输出,保存训练好的网络用语计算个体适应度值。根据非线性函数方程随机得到该函数的4 000组输入输出数据,存储于data.mat中,其中input为函数输入数据,output为函数对应输出数据,从中随机抽取3 900组训练数据训练网络,100组测试数据测试网络拟合性能。最后保存训练好的网络。
把训练好的BP神经网络预测输出作为个体适应度值。
BP神经网络拟合结果分析
本文中个体的适应度值为BP神经网络预测值,因此BP神经网络预测精度对于最优位置的寻找具有非常重要的意义。由于寻优非线性函数有2个输入参数、1个输出参数,所以构建的BP神经网络的结构为2-5-1。共取非线性函数4 000组输入输出数据,从中随机选择3 900组数据训练BP神经网络,100组数据作为测试数据测试BP神经网络拟合性能,BP神经网络预测输出和期望输出对比如下图3所示。
从BP神经网络预测结果可以看出,BP神经网络可以准确预测非线性函数输出,可以把网络预测近似看成函数实际输出。
遗传算法寻优结果分析 BP神经网络训练结束后,可以利用遗传算法寻找该非线性函数的最小值。遗传算法的迭代次数是100次,种群规模是20,交叉概率为0.4,变异概率为0.2,采用浮点数编码,个体长度为21,优化过程中最优个体适应度值变化曲线如下图4所示。
本文所使用的方法有比较重要的工程应用价值,比如对于某项试验来说,试验目的是获取到最大试验结果对应的实验条件,但是由于时间和经费限制,该试验只能进行有限次,可能单靠试验结果找不到最优的试验条件。这时可以在已知试验数据的基础上,通过本文介绍的神经网络遗传算法寻找最优试验条件。
思路就是先根据试验条件数和试验结果数确定BP神经网络结构;然后把试验条件作为输入数据,试验结果作为输出数据训练BP网络,使得训练后的网络可以预测一定试验条件下的试验结果;最后把试验条件作为遗传算法中的种群个体,把网络预测的试验结果作为个体适应度值,通过遗传算法推导最优试验结果及其对应试验条件。
D. 遗传神经网络识别原理
4.3.1 遗传BP简介
遗传识别是遗传算法+神经网络的一种新兴的寻优技术,适合于复杂的、叠加的非线性系统的辨识描述。神经网络算法是当前较为成熟的识别分类方法,但网络权值的训练一直存在着缺陷。为此结合具体应用,在对遗传算法进行改进的基础上,本文采用了一种基于遗传学习权值的神经网络识别方法,并取得了较好的效果。
尽管常规遗传算法是稳健的,但针对一个具体问题遗传算法只有和其他方法(或称原有算法)有效地结合在一起,组成一个新的混合算法,才能在实际中得到广泛应用。混合算法既要保持原有算法的长处,又要保持遗传算法的优点,因此常规遗传算法中的适应值函数、编码、遗传算子等必须做适当的修改以适应混合算法的要求。
4.3.1.1 适应值信息
常规算法中,适应值常被表示为全局极小,用欧氏距离来实现。例如,适应值常被表示为如下形式:
图4-5 改进的 GABP计算流程图
GABP的计算过程图如图4-5所示。
E. 遗传神经网络算法和神经网络算法的区别
最本质的区别可以说是学习方法不同,或者说模型的优化方法不同。
前者应该是基于版遗传算法进行网络权值权的学习,而后者大都是采用反向传播(BP)算法进行权值学习,而这两种算法差异很大。建议你分别了解:
1)遗传算法
2)反向传播算法
F. 神经网络和遗传算法有什么关系
遗传算法是一种智能优化算法,神经网络是人工智能算法的一种。
可以将遗传算法用于神经网络的参数优化中。
G. 关于遗传算法优化BP神经网络的问题
程序:
1、未经遗传算法优化的BP神经网络建模
clear;
clc;
%%%%%%%%%%%%%输入参数%%%%%%%%%%%%%%
N=2000; %数据总个数
M=1500; %训练数据
%%%%%%%%%%%%%训练数据%%%%%%%%%%%%%%
for i=1:N
input(i,1)=-5+rand*10;
input(i,2)=-5+rand*10;
end
output=input(:,1).^2+input(:,2).^2;
save data input output
load data.mat
%从1到N随机排序
k=rand(1,N);
[m,n]=sort(k);
%找出训练数据和预测数据
input_train=input(n(1:M),:)';
output_train=output(n(1:M),:)';
input_test=input(n((M+1):N),:)';
output_test=output(n((M+1):N),:)';
%数据归一化
[inputn,inputs]=mapminmax(input_train);
[outputn,outputs]=mapminmax(output_train);
%构建BP神经网络
net=newff(inputn,outputn,5);
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;
%BP神经网络训练
net=train(net,inputn,outputn);
%测试样本归一化
inputn_test=mapminmax('apply',input_test,inputs);
%BP神经网络预测
an=sim(net,inputn_test);
%%网络得到数据反归一化
BPoutput=mapminmax('reverse',an,outputs);
figure(1)
%plot(BPoutput,':og');
scatter(1:(N-M),BPoutput,'rx');
hold on;
%plot(output_test,'-*');
scatter(1:(N-M),output_test,'o');
legend('预测输出','期望输出','fontsize',12);
title('BP网络预测输出','fontsize',12);
xlabel('样本','fontsize',12);
xlabel('优化前输出的误差','fontsize',12);
figure(2)
error=BPoutput-output_test;
plot(1:(N-M),error);
xlabel('样本','fontsize',12);
ylabel('优化前输出的误差','fontsize',12);
%save net net inputs outputs
2、遗传算法优化的BP神经网络建模
(1)主程序
%清空环境变量
clc
clear
%读取数据
load data.mat
%节点个数
inputnum=2;
hiddennum=5;
outputnum=1;
%训练数据和预测数据
input_train=input(1:1500,:)';
input_test=input(1501:2000,:)';
output_train=output(1:1500)';
output_test=output(1501:2000)';
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%构建网络
net=newff(inputn,outputn,hiddennum);
%% 遗传算法参数初始化
maxgen=10; %进化代数,即迭代次数
sizepop=30; %种群规模
pcross=[0.3]; %交叉概率选择,0和1之间
pmutation=[0.1]; %变异概率选择,0和1之间
%节点总数
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;
lenchrom=ones(1,numsum);
bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; %数据范围
%------------------------------------------------------种群初始化------------------------------%------------------
--------
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体
%avgfitness=[]; %每一代种群的平均适应度
bestfitness=[]; %每一代种群的最佳适应度
bestchrom=[]; %适应度最好的染色体
%初始化种群
for i=1:sizepop
%随机产生一个种群
indivials.chrom(i,:)=Code(lenchrom,bound); %编码
x=indivials.chrom(i,:);
%计算适应度
indivials.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn); %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
%avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
%trace=[avgfitness bestfitness];
%% 迭代求解最佳初始阀值和权值
% 进化开始
for i=1:maxgen
i
% 选择
indivials=Select(indivials,sizepop);
% avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,i,maxgen,bound);
% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:); %解码
indivials.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);
end
%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
%avgfitness=sum(indivials.fitness)/sizepop;
% trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%% 遗传算法结果分析
%figure(3)
%[r c]=size(trace);
%plot([1:r]',trace(:,2),'b--');
%title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
%xlabel('进化代数');ylabel('适应度');
%legend('平均适应度','最佳适应度');
disp('适应度 变量');
x=bestchrom;
%% 把最优初始阀值权值赋予网络预测
% %用遗传算法优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x
(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%% BP网络训练
%网络进化参数
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
%net.trainParam.goal=0.00001;
%网络训练
[net,per2]=train(net,inputn,outputn);
%% BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;
%figure(4);
hold on;plot(1:500,error,'r');
legend('优化前的误差','优化后的误差','fontsize',12)
(2)编码子程序code.m
function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值
flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret中
flag=test(lenchrom,bound,ret); %检验染色体的可行性
end
(3)适应度函数fun.m
function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)
%该函数用来计算适应度值
%x input 个体
%inputnum input 输入层节点数
%outputnum input 隐含层节点数
%net input 网络
%inputn input 训练输入数据
%outputn input 训练输出数据
%error output 个体适应度值
%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net=newff(inputn,outputn,hiddennum);
%网络进化参数
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
%网络权值赋值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%网络训练
net=train(net,inputn,outputn);
an=sim(net,inputn);
error=sum(abs(an-outputn));
(4)选择操作Select.m
function ret=select(indivials,sizepop)
% 该函数用于进行选择操作
% indivials input 种群信息
% sizepop input 种群规模
% ret output 选择后的新种群
%求适应度值倒数
[a bestch]=min(indivials.fitness);
%b=indivials.chrom(bestch);
%c=indivials.fitness(bestch);
fitness1=10./indivials.fitness; %indivials.fitness为个体适应度值
%个体选择概率
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
%采用轮盘赌法选择新个体
index=[];
for i=1:sizepop %sizepop为种群数
pick=rand;
while pick==0
pick=rand;
end
for i=1:sizepop
pick=pick-sumf(i);
if pick<0
index=[index i];
break;
end
end
end
%index=[index bestch];
%新种群
indivials.chrom=indivials.chrom(index,:); %indivials.chrom为种群中个体
indivials.fitness=indivials.fitness(index);
%indivials.chrom=[indivials.chrom;b];
%indivials.fitness=[indivials.fitness;c];
ret=indivials;
(5)交叉操作cross.m
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色体的长度
% chrom input : 染色体群
% sizepop input : 种群规模
% ret output : 交叉后的染色体
for i=1:sizepop %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)
% 随机选择两个染色体进行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率决定是否进行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 随机选择交叉位
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
pick=rand; %交叉开始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果两个染色体不是都可行,则重新交叉
end
end
ret=chrom;
(6)变异操作Mutation.m
function ret=Mutation(pmutation,lenchrom,chrom,sizepop,num,maxgen,bound)
% 本函数完成变异操作
% pcorss input : 变异概率
% lenchrom input : 染色体长度
% chrom input : 染色体群
% sizepop input : 种群规模
% opts input : 变异方法的选择
% pop input : 当前种群的进化代数和最大的进化代数信息
% bound input : 每个个体的上届和下届
% maxgen input :最大迭代次数
% num input : 当前迭代次数
% ret output : 变异后的染色体
for i=1:sizepop %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,
%但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)
% 随机选择一个染色体进行变异
pick=rand;
while pick==0
pick=rand;
end
index=ceil(pick*sizepop);
% 变异概率决定该轮循环是否进行变异
pick=rand;
if pick>pmutation
continue;
end
flag=0;
while flag==0
% 变异位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick*sum(lenchrom)); %随机选择了染色体变异的位置,即选择了第pos个变量进行变异
pick=rand; %变异开始
fg=(rand*(1-num/maxgen))^2;
if pick>0.5
chrom(i,pos)=chrom(i,pos)+(bound(pos,2)-chrom(i,pos))*fg;
else
chrom(i,pos)=chrom(i,pos)-(chrom(i,pos)-bound(pos,1))*fg;
end %变异结束
flag=test(lenchrom,bound,chrom(i,:)); %检验染色体的可行性
end
end
ret=chrom;
H. 基于遗传算法的BP神经网络
源码地址: https://github.com/Grootzz/GA-BP
介绍:
利用遗传算法并行地优化BP网络的权值和阈值,从而避免了BP网络在优化权值和阈值时陷入局部最优的缺点
背景:
这个项目的背景为客运量和货运量的预测
文件介绍:
因为项目中用到了GAOT工具包中的函数,所以需要将GAOT工具包加入路径。
操作步骤为:点击GAOT文件--->添加到路径--->选定文件夹和子文件夹
这样,工程中就可以调用GAOT工具包中的函数了
源码地址: https://github.com/Grootzz/GA-BP