导航:首页 > 编程大全 > 神经网络进行预测的代码

神经网络进行预测的代码

发布时间:2023-07-05 17:38:01

❶ matlab BP神经网络预测代码

P=[1;2;3;4;5];%月
P=[P/50];
T=[2;3;4;5;6];%月训练样本
T=[T/50];
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1];
net=newff(threshold,[15,7],{'tansig','logsig'},'trainlm');
net.trainParam.epochs=2000;
net.trainParam.goal=0.001;
LP.lr=0.1;
net=train(net,P,T);
P_test=[6月]';%6月数据预内测容7月
P_test=[P_test/50];
y=sim(net,P_test)
y=[y*50]

❷ 关于构建一个三层BP神经网络对药品的销售进行预测(程序由matlab编写)

clear all;
close all;
clc;
%p = [2056 2395 2600 2298 1634 1600 1837 1478 1900 2395 2600 2298 1634 1600 1873 1478 1900 1500 2600 2298 1634 1600 1873 1478 1900 1500 2046];
t = [1873 1478 1900 1500 2046 1556];
p = [ 2056 2395 2600 2298 1634 1600];
%--归一化输入输出-- 映射到[0,1]--%
pmax = max(p);
pmin = min(p);
P = (p-pmin)./(pmax-pmin);
tmax = max(t);
tmin = min(t);
T = (t-tmin)./(tmax-tmin);

net =newff(P,T,5,{'tansig','purelin'},'traingdx');
%--设置训练参数--%
net.trainParam.show =50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
net.divideFcn= '';

[net,tr] = train(net,P,T);
A =sim(net,P);
a =A.*(tmax - tmin)+tmin;
x = 7:12;
figure
plot(x,t,'+');
hold on;
plot(x,a,'or');
hold off;
xlabel('month');
ylabel('**')
legend('实际','预测')

❸ BP神经网络预测代码

你这是在做时间序列呢。

你可以去《神经网络之家》nnetinfo----》学习教程二--->神经网络在时间序列上的应用
上面有讲解。我把代码摘抄给你

% time series:神经网络在时间序列上的应用

% 本代码出自《神经网络之家》

timeList = 0 :0.01 : 2*pi; %生成时间点

X = sin(timeList); %生成时间序列信号

%利用x(t-5),x(t-4),x(t-3),x(t-2),x(t-1)作为输入预测x(t),将x(t)作为输出数据

inputData = [X(1:end-5);X(2:end-4);X(3:end-3);X(4:end-2);X(5:end-1)];

outputData = X(6:end);

%使用用输入输出数据(inputData、outputData)建立网络,

%隐节点个数设为3.其中隐层、输出层的传递函数分别为tansig和purelin,使用trainlm方法训练。

net = newff(inputData,outputData,3,{'tansig','purelin'},'trainlm');

%设置一些常用参数

net.trainparam.goal = 0.0001; %训练目标:均方误差低于0.0001

net.trainparam.show = 400; %每训练400次展示一次结果

net.trainparam.epochs = 1500; %最大训练次数:15000.

[net,tr] = train(net,inputData,outputData);%调用matlab神经网络工具箱自带的train函数训练网络

simout = sim(net,inputData); %调用matlab神经网络工具箱自带的sim函数得到网络的预测值

figure; %新建画图窗口窗口

t=1:length(simout);

plot(t,outputData,t,simout,'r')%画图,对比原来的输出和网络预测的输出

%------------------附加:抽取数学表达式----------------------------top

%希望脱离matlab的sim函数来使用训练好网络的话,可以抽取出数学的表达式,|

%这样在任何软件中,只需要按表达式计算即可。 |

%============抽取数学表达式==================

%抽取出网络的权值和阈值

w12 = net.iw{1,1}; %第1层(输入层)到第2层(隐层)的权值

b2 = net.b{1}; %第2层(隐层)的阈值

w23 = net.lw{2,1}; %第2层(隐层)到第3层(输出层)的权值

b3 = net.b{2}; %第3层(输出层)的阈值

%由于有归一化,必须先将归一化信息抓取出来

iMax = max(inputData,[],2);

iMin = min(inputData,[],2);

oMax = max(outputData,[],2);

oMin = min(outputData,[],2);

%方法1:归一化--->计算输出--->反归一化

normInputData=2*(inputData -repmat(iMin,1,size(inputData,2)))./repmat(iMax-iMin,1,size(inputData,2)) -1;

tmp = w23*tansig( w12 *normInputData + repmat(b2,1,size(normInputData,2))) + repmat(b3,1,size(normInputData,2));

myY = (tmp+1).*repmat(oMax-oMin,1,size(outputData,2))./2 + repmat(oMin,1,size(outputData,2));

%方法2:用真正的权值和阈值进行计算

%公式请参考《提取对应原始数据的权重和阈值》

W12 = w12 * 2 ./repmat(iMax' -iMin',size(w12,1),1);

B2 = -w12* (2*iMin ./(iMax - iMin) + 1) + b2;

W23 = w23 .*repmat((oMax -oMin),1,size(w23,2))/2;

B3 = (oMax -oMin) .*b3 /2 + (oMax -oMin)/2 + oMin;

%最终的数学表达式:

myY2 = W23 *tansig( W12 *inputData + repmat(B2,1,size(inputData,2))) + repmat(B3,1,size(inputData,2));

❹ 求一个bp神经网络预测模型的MATLAB程序

BP神经网络预测的步骤:

1、输入和输出数据。

2、创建网络。fitnet()

3、划分训练,测试和验证数据的比例。net.divideParam.trainRatio;net.divideParam.valRatio;net.divideParam.testRatio

4、训练网络。train()

5、根据图表判断拟合好坏。ploterrcorr();parcorr();plotresponse()

6、预测往后数据。net()

7、画出预测图。plot()

执行下列命令

BP_prediction

得到结果:

[ 2016, 14749.003045557066798210144042969]

[ 2017, 15092.847215188667178153991699219]

[ 2018, 15382.150005970150232315063476562]

[ 2019, 15398.85769711434841156005859375]

[ 2020, 15491.935150090605020523071289062]

❺ 如何利用matlab进行神经网络预测

matlab 带有神经网络工具箱,可直接调用,建议找本书看看,或者MATLAB论坛找例子。回
核心调用语句如下:答
%数据输入

%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% BP网络训练
% %初始化网络结构
net=newff(inputn,outputn,[8 8]);
net.trainParam.epochs=100;
net.trainParam.lr=0.01;
net.trainParam.goal=0.01;
%网络训练
net=train(net,inputn,outputn);
%% BP网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
%网络预测输出
an=sim(net,inputn_test);
%网络输出反归一化
BPoutput=mapminmax('reverse',an,outputps);
%% 结果分析

❻ 求助:用神经网络做一个数据预测

下列代码为BP神经网络预测37-56周的销售量的代码:

% x为原始序列

load 销售量.mat

data=C

x=data';

t=1:length(x);

lag=2;

fn=length(t);

[f_out,iinput]=BP(x,lag,fn);

%预测年份或某一时间段

t1=fn:fn+20;

n=length(t1);

t1=length(x)+1:length(x)+n;

%预测步数为fn

fn=length(t1);

[f_out,iinput]=BP(x,lag,fn);

P=vpa(f_out,5);

[t1' P']

% 画出预测图

figure(6),plot(t,x,'b*-'),hold on

plot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid on

xlabel('周数'),ylabel('销售量');

str=['BP神经网络预测',num2str(length(x)+1),'-',num2str(length(x)+20),'周的销售量'];

title(str)

str1=['1-',num2str(length(x)),'周的销售量'];

str2=[num2str(length(x)+1),'-',num2str(length(x)+20),'周的预测销售量'];

legend(str1,str2)

运行结果

❼ matlab中用RBF神经网络做预测的代码怎么写

clc;

clearall;

closeall;

%%----

c_1=[00];

c_2=[11];

c_3=[01];

c_4=[10];

n_L1=20;%numberoflabel1

n_L2=20;%numberoflabel2

A=zeros(n_L1*2,3);

A(:,3)=1;

B=zeros(n_L2*2,3);

B(:,3)=0;

%createrandompoints

fori=1:n_L1

A(i,1:2)=c_1+rand(1,2)/2;

A(i+n_L1,1:2)=c_2+rand(1,2)/2;

end

fori=1:n_L2

B(i,1:2)=c_3+rand(1,2)/2;

B(i+n_L2,1:2)=c_4+rand(1,2)/2;

end

%showpoints

scatter(A(:,1),A(:,2),[],'r');

holdon

scatter(B(:,1),B(:,2),[],'g');

X=[A;B];

data=X(:,1:2);

label=X(:,3);

%%Usingkmeanstofindcintervector

n_center_vec=10;

rng(1);

[idx,C]=kmeans(data,n_center_vec);

holdon

scatter(C(:,1),C(:,2),'b','LineWidth',2);

%%Calulatesigma

n_data=size(X,1);

%calculateK

K=zeros(n_center_vec,1);

fori=1:n_center_vec

K(i)=numel(find(idx==i));

end

%

%thencalucatesigma

sigma=zeros(n_center_vec,1);

fori=1:n_center_vec

[n,d]=knnsearch(data,C(i,:),'k',K(i));

L2=(bsxfun(@minus,data(n,:),C(i,:)).^2);

L2=sum(L2(:));

sigma(i)=sqrt(1/K(i)*L2);

end

%%Calutateweights

%kernelmatrix

k_mat=zeros(n_data,n_center_vec);

fori=1:n_center_vec

r=bsxfun(@minus,data,C(i,:)).^2;

r=sum(r,2);

k_mat(:,i)=exp((-r.^2)/(2*sigma(i)^2));

end

W=pinv(k_mat'*k_mat)*k_mat'*label;

y=k_mat*W;

%y(y>=0.5)=1;

%y(y<0.5)=0;

%%

[W1,sigma1,C1]=RBF_training(data,label,10);

y1=RBF_predict(data,W,sigma,C1);

[W2,sigma2,C2]=lazyRBF_training(data,label,2);

y2=RBF_predict(data,W2,sigma2,C2);

(7)神经网络进行预测的代码扩展阅读

matlab的特点

1、具有完备的图形处理功能,实现计算结果和编程的可视化;

2、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;

3、功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

❽ 对于一个时间序列怎么编写bp神经网络matlab程序实现预测

BP网络训练图:
P = [1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009];%输入向量
T = [115.4 212.1 259.7 251.8 352 463.4 509 558 614 700 696 712];%期望输出
Z=[2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020]
%创建两层的BP网络:
net = newff([1998 2009],[100 1],{'tansig' 'purelin'});
net.trainparam.show=50;
%每次循环50次
net.trainParam.epochs = 500;
%最大循环500次
net = train(net,P,T);

%对网络进行反复训练

只给出了一部分程序,其余的QQ传给你,留你的QQ。
结果:
Y =

Columns 1 through 7

115.4067 212.0911 259.7029 251.7979 352.0027 463.4023 508.9910

Columns 8 through 12

558.0155 613.9892 699.9980 696.0063 711.9970

预测值a =

Columns 1 through 7

711.9970 711.7126 749.4216 749.2672 746.7096 746.7096 751.0786

Columns 8 through 11

760.2729 757.3316 696.5151 696.5151
分别是2010-2020年的预测数据。

阅读全文

与神经网络进行预测的代码相关的资料

热点内容
同花花顺数据在线在哪里搞 浏览:368
mysql文件格式 浏览:336
微信传文件到qq 浏览:586
手机如何发送文件去车机 浏览:76
apple5w电源适配器真假 浏览:288
多linux主机文件采集 浏览:743
sdcex格式文件 浏览:53
工程概算文件内容包括 浏览:635
什么样的硬盘数据不丢失 浏览:655
java闹钟案例 浏览:49
win7取消隐藏的文件夹 浏览:270
新昌网站主界面设计是什么 浏览:999
u盘坏了文件找不到怎么办 浏览:106
ps能查到源文件吗 浏览:702
文件路径在哪找 浏览:962
word里怎么加向下箭头 浏览:162
骗钱app有哪些 浏览:202
微信sdk初始化失败 浏览:180
有哪些免费的录制视频app 浏览:330
java反射获取返回值 浏览:91

友情链接