① 卷积神经网络
卷积神经网络 (Convolutional Neural Networks,CNN)是一种前馈神经网络。卷积神经网络是受生物学上感受野(Receptive Field)的机制而提出的。感受野主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。比如在视觉神经系统中,一个神经元的感受野是指视网膜上的特定区域,只有这个区域内的刺激才能够激活该神经元。
卷积神经网络又是怎样解决这个问题的呢?主要有三个思路:
在使用CNN提取特征时,到底使用哪一层的输出作为最后的特征呢?
答:倒数第二个全连接层的输出才是最后我们要提取的特征,也就是最后一个全连接层的输入才是我们需要的特征。
全连接层会忽视形状。卷积层可以保持形状不变。当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。
CNN中,有时将 卷积层的输入输出数据称为特征图(feature map) 。其中, 卷积层的输入数据称为输入特征图(input feature map) , 输出数据称为输出特征图(output feature map)。
卷积层进行的处理就是 卷积运算 。卷积运算相当于图像处理中的“滤波器运算”。
滤波器相当于权重或者参数,滤波器数值都是学习出来的。 卷积层实现的是垂直边缘检测 。
边缘检测实际就是将图像由亮到暗进行区分,即边缘的过渡(edge transitions)。
卷积层对应到全连接层,左上角经过滤波器,得到的3,相当于一个神经元输出为3.然后相当于,我们把输入矩阵拉直为36个数据,但是我们只对其中的9个数据赋予了权重。
步幅为1 ,移动一个,得到一个1,相当于另一个神经单元的输出是1.
并且使用的是同一个滤波器,对应到全连接层,就是权值共享。
在这个例子中,输入数据是有高长方向的形状的数据,滤波器也一样,有高长方向上的维度。假设用(height, width)表示数据和滤波器的形状,则在本例中,输入大小是(4, 4),滤波器大小是(3, 3),输出大小是(2, 2)。另外,有的文献中也会用“核”这个词来表示这里所说的“滤波器”。
对于输入数据,卷积运算以一定间隔滑动滤波器的窗口并应用。这里所说的窗口是指图7-4中灰色的3 × 3的部分。如图7-4所示,将各个位置上滤
波器的元素和输入的对应元素相乘,然后再求和(有时将这个计算称为乘积累加运算)。然后,将这个结果保存到输出的对应位置。将这个过程在所有位置都进行一遍,就可以得到卷积运算的输出。
CNN中,滤波器的参数就对应之前的权重。并且,CNN中也存在偏置。
在进行卷积层的处理之前,有时要向输入数据的周围填入固定的数据(比如0等),这称为填充(padding),是卷积运算中经常会用到的处理。比如,在图7-6的例子中,对大小为(4, 4)的输入数据应用了幅度为1的填充。“幅度为1的填充”是指用幅度为1像素的0填充周围。
应用滤波器的位置间隔称为 步幅(stride) 。
假设输入大小为(H, W),滤波器大小为(FH, FW),输出大小为(OH, OW),填充为P,步幅为S。
但是所设定的值必须使式(7.1)中的 和 分别可以除尽。当输出大小无法除尽时(结果是小数时),需要采取报错等对策。顺便说一下,根据深度学习的框架的不同,当值无法除尽时,有时会向最接近的整数四舍五入,不进行报错而继续运行。
之前的卷积运算的例子都是以有高、长方向的2维形状为对象的。但是,图像是3维数据,除了高、长方向之外,还需要处理通道方向。
在3维数据的卷积运算中,输入数据和滤波器的通道数要设为相同的值。
因此,作为4维数据,滤波器的权重数据要按(output_channel, input_channel, height, width)的顺序书写。比如,通道数为3、大小为5 × 5的滤
波器有20个时,可以写成(20, 3, 5, 5)。
对于每个通道,均使用自己的权值矩阵进行处理,输出时将多个通道所输出的值进行加和即可。
卷积运算的批处理,需要将在各层间传递的数据保存为4维数据。具体地讲,就是按(batch_num, channel, height, width)的顺序保存数据。
这里需要注意的是,网络间传递的是4维数据,对这N个数据进行了卷积运算。也就是说,批处理将N次的处理汇总成了1次进行。
池化是缩小高、长方向上的空间的运算。比如,如图7-14所示,进行将2 × 2的区域集约成1个元素的处理,缩小空间大小。
图7-14的例子是按步幅2进行2 × 2的Max池化时的处理顺序。“Max池化”是获取最大值的运算,“2 × 2”表示目标区域的大小。如图所示,从
2 × 2的区域中取出最大的元素。此外,这个例子中将步幅设为了2,所以2 × 2的窗口的移动间隔为2个元素。另外,一般来说,池化的窗口大小会和步幅设定成相同的值。比如,3 × 3的窗口的步幅会设为3,4 × 4的窗口的步幅会设为4等。
除了Max池化之外,还有Average池化等。相对于Max池化是从目标区域中取出最大值,Average池化则是计算目标区域的平均值。 在图像识别领域,主要使用Max池化。 因此,本书中说到“池化层”时,指的是Max池化。
池化层的特征
池化层有以下特征。
没有要学习的参数
池化层和卷积层不同,没有要学习的参数。池化只是从目标区域中取最大值(或者平均值),所以不存在要学习的参数。
通道数不发生变化
经过池化运算,输入数据和输出数据的通道数不会发生变化。如图7-15所示,计算是按通道独立进行的。
对微小的位置变化具有鲁棒性(健壮)
输入数据发生微小偏差时,池化仍会返回相同的结果。因此,池化对输入数据的微小偏差具有鲁棒性。比如,3 × 3的池化的情况下,如图
7-16所示,池化会吸收输入数据的偏差(根据数据的不同,结果有可能不一致)。
经过卷积层和池化层之后,进行Flatten,然后丢到全连接前向传播神经网络。
(找到一张图片使得某个filter响应最大。相当于filter固定,未知的是输入的图片。)未知的是输入的图片???
k是第k个filter,x是我们要找的参数。?这里我不是很明白。我得理解应该是去寻找最具有代表性的特征。
使用im2col来实现卷积层
卷积层的参数是需要学习的,但是池化层没有参数需要学习。全连接层的参数需要训练得到。
池化层不需要训练参数。全连接层的参数最多。卷积核的个数逐渐增多。激活层的size,逐渐减少。
最大池化只是计算神经网络某一层的静态属性,没有什么需要学习的,它只是一个静态属性 。
像这样展开之后,只需对展开的矩阵求各行的最大值,并转换为合适的形状即可(图7-22)。
参数
• input_dim ― 输入数据的维度:( 通道,高,长 )
• conv_param ― 卷积层的超参数(字典)。字典的关键字如下:
filter_num ― 滤波器的数量
filter_size ― 滤波器的大小
stride ― 步幅
pad ― 填充
• hidden_size ― 隐藏层(全连接)的神经元数量
• output_size ― 输出层(全连接)的神经元数量
• weitght_int_std ― 初始化时权重的标准差
LeNet
LeNet在1998年被提出,是进行手写数字识别的网络。如图7-27所示,它有连续的卷积层和池化层(正确地讲,是只“抽选元素”的子采样层),最后经全连接层输出结果。
和“现在的CNN”相比,LeNet有几个不同点。第一个不同点在于激活函数。LeNet中使用sigmoid函数,而现在的CNN中主要使用ReLU函数。
此外,原始的LeNet中使用子采样(subsampling)缩小中间数据的大小,而现在的CNN中Max池化是主流。
AlexNet
在LeNet问世20多年后,AlexNet被发布出来。AlexNet是引发深度学习热潮的导火线,不过它的网络结构和LeNet基本上没有什么不同,如图7-28所示。
AlexNet叠有多个卷积层和池化层,最后经由全连接层输出结果。虽然结构上AlexNet和LeNet没有大的不同,但有以下几点差异。
• 激活函数使用ReLU。
• 使用进行局部正规化的LRN(Local Response Normalization)层。
• 使用Dropout
TF2.0实现卷积神经网络
valid意味着不填充,same是填充
or the SAME padding, the output height and width are computed as:
out_height = ceil(float(in_height) / float(strides[1]))
out_width = ceil(float(in_width) / float(strides[2]))
And
For the VALID padding, the output height and width are computed as:
out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))
因此,我们可以设定 padding 策略。在 tf.keras.layers.Conv2D 中,当我们将 padding 参数设为 same 时,会将周围缺少的部分使用 0 补齐,使得输出的矩阵大小和输入一致。
② 用于量子计算机的深度卷积神经网络
量子计算机将用于什么用途?量子计算机有望在许多领域帮助解决难题,包括机器学习。
本文详细讲述 量子计算机 上 卷积神经网络 (CNN)的理论实现。我们将此算法称为 QCNN ,我们证明了它可以比CNN 更快 地运行,并且精度 很高 。
为此,我们必须提出 卷积积 的 量子形式 ,找到实现非线性和池化的方法,以及对 表示图像 的 量子态 进行层析成像的新方法,以 保留有意义的信息 。
简而言之,我们可以说 量子物理系统可以描述为 维度为2^n的某些希尔伯特空间中的 向量 ,其中n是粒子数。实际上,这些向量表示许多可能的观察结果的叠加。
另一方面,机器学习,尤其是神经网络,正在粗略地使用向量和矩阵来理解或处理数据。 量子机器学习(QML)旨在使用量子系统对向量进行编码,并使用新的量子算法对其进行学习 。一个关键的概念是在许多矢量上使用量子叠加,我们可以同时处理它们。
我不会更深入地介绍量子计算或QML。有关更多详细信息,可以参考NeurIPS 2019中有关 Quantum k-means的 一篇文章 :
卷积神经网络(CNN)是一种流行且高效的神经网络,用于图像分类,信号处理等。在大多数层中,将 卷积积 应用于图像或张量的输入上。通常后面是 非线性层和池化层 。
3D张量输入X ^ 1(RGB图像)和4D张量内核K ^ 1之间的卷积。
在本章中,我将重点介绍一层,解释什么是量子CNN。
这里的核心思想是我们可以根据矩阵乘法来重新构造卷积积。
该算法首先以量子叠加方式加载矩阵的 所有行和列 。然后,我们使用先前开发的 Quantum Inner Proct Estimation估算 输出的每个像素。在实践中,这就像只计算一个输出像素(图中的红点),但是以 量子叠加的方式进行计算可以使它们同时全部都具有 !然后,我们可以同时对它们中的每一个应用非线性。
不幸的是,我们所拥有的只是一个量子状态,其中所有像素并行存在,并不意味着我们可以访问所有像素。如果我们打开"量子盒"并查看结果(一个度量),我们 每次都会随机地只看到一个输出像素 。在打开盒子之前,这里都有"四处漂浮"的东西,就像著名的薛定谔的死活猫。
为了解决这个问题,我们引入了一种 只检索最有意义的像素的方法 。实际上,量子叠加中的每个输出像素都有一个幅度,与我们测量系统时 被看到 的幅度有关。在我们的算法中,我们强制此幅度等于像素值。 因此,具有高值的输出像素更有可能被看到。
在CNN中,输出中的高值像素非常重要。它们代表输入中存在特定模式的区域。通过了解不同模式出现的位置,神经网络可以理解图像。因此,这些 高价值像素承载着有意义的信息 ,我们可以舍弃其他希望CNN适应的 像素 。
图像上量子效应(噪声,随机性,采样)的小示例。凭直觉,我们仅对高值像素采样后仍可以"理解"图像。
请注意,在对这些输出像素进行采样时,我们可以在存储它们时应用任何类型的 合并 (有关技术细节,请参见论文)。我们将这些像素存储在经典内存中,以便可以将它们重新加载为 下一层的 输入。
传统上,CNN层需要时间 Õ( 输出大小 x 内核大小 ) 。这就是为什么例如使用许多大内核来训练这些网络变得昂贵的原因。我们的 量子CNN 需要时间 为O( ( σ X 输出大小) X Q) ,其中 σ 是我们从输出(<1)绘制样品的比率,和 Q 表示量子精度参数和数据相关的参数一束。有 没有在内核大小更依赖 (数量和尺寸),这可能允许进行更深入的CNN。
通过量子CNN的这种设计,我们现在也想用量子算法对其进行训练。训练包括遵循梯度下降规则更新内核参数。在这里也可以找到一种更快的量子算法,它几乎等同于具有某些额外误差的通常的梯度下降。
QCNN和量子反向传播看起来不错,但暗示了很多近似,噪声和随机性。尽管有这些伪像,CNN仍然可以学习吗?我们比较了小型经典CNN的训练和QCNN在学习对手写数字进行分类(MNIST数据集)的任务上的模拟。这表明 QCNN可以以相似的精度学习 。
量子和经典CNN训练曲线之间的比较。 σ 是从每一层后的输出提取的高值像素的比率。期望 σ 太小,QCNN可以很好地学习。请注意,此数值模拟很小,只能给出直觉,不是证明。
在这项工作中,我们设计了第一个量子算法,通过引入量子卷积乘积和检索有意义的信息的新方法,几乎可以重现任何经典的CNN体系结构。它可以允许使用更深,更大的输入或内核来大大加快CNN的速度。我们还开发了量子反向传播算法,并模拟了整个训练过程。
请读者思考的问题:我们可以在其他数据集使用大型架构上训练QCNN吗?
③ 卷积神经网络
关于花书中卷积网络的笔记记录于 https://www.jianshu.com/p/5a3c90ea0807 。
卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有 局部连接、权重共享 等特性的深层前馈神经网络。卷积神经网络是受生物学上感受野的机制而提出。 感受野(Receptive Field) 主要是指听觉、视觉等神经系统中一些神经元的特性,即 神经元只接受其所支配的刺激区域内的信号 。
卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:
目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络,使用反向传播算法进行训练。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及汇聚 。这些特性使卷积神经网络具有一定程度上的平移、缩放和旋转不变性。
卷积(Convolution)是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。
一维卷积经常用在信号处理中,用于计算信号的延迟累积。假设一个信号发生器每个时刻t 产生一个信号 ,其信息的衰减率为 ,即在 个时间步长后,信息为原来的 倍。假设 ,那么在时刻t收到的信号 为当前时刻产生的信息和以前时刻延迟信息的叠加:
我们把 称为 滤波器(Filter)或卷积核(Convolution Kernel) 。假设滤波器长度为 ,它和一个信号序列 的卷积为:
信号序列 和滤波器 的卷积定义为:
一般情况下滤波器的长度 远小于信号序列长度 ,下图给出一个一维卷积示例,滤波器为 :
二维卷积经常用在图像处理中。因为图像为一个两维结构,所以需要将一维卷积进行扩展。给定一个图像 和滤波器 ,其卷积为:
下图给出一个二维卷积示例:
注意这里的卷积运算并不是在图像中框定卷积核大小的方框并将各像素值与卷积核各个元素相乘并加和,而是先把卷积核旋转180度,再做上述运算。
在图像处理中,卷积经常作为特征提取的有效方法。一幅图像在经过卷积操作后得到结果称为 特征映射(Feature Map) 。
最上面的滤波器是常用的高斯滤波器,可以用来对图像进行 平滑去噪 ;中间和最下面的过滤器可以用来 提取边缘特征 。
在机器学习和图像处理领域,卷积的主要功能是在一个图像(或某种特征)上滑动一个卷积核(即滤波器),通过卷积操作得到一组新的特征。在计算卷积的过程中,需要进行卷积核翻转(即上文提到的旋转180度)。 在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。
互相关(Cross-Correlation)是一个衡量两个序列相关性的函数,通常是用滑动窗口的点积计算来实现 。给定一个图像 和卷积核 ,它们的互相关为:
互相关和卷积的区别仅在于卷积核是否进行翻转。因此互相关也可以称为不翻转卷积 。当卷积核是可学习的参数时,卷积和互相关是等价的。因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积。事实上,很多深度学习工具中卷积操作其实都是互相关操作。
在卷积的标准定义基础上,还可以引入滤波器的 滑动步长 和 零填充 来增加卷积多样性,更灵活地进行特征抽取。
滤波器的步长(Stride)是指滤波器在滑动时的时间间隔。
零填充(Zero Padding)是在输入向量两端进行补零。
假设卷积层的输入神经元个数为 ,卷积大小为 ,步长为 ,神经元两端各填补 个零,那么该卷积层的神经元数量为 。
一般常用的卷积有以下三类:
因为卷积网络的训练也是基于反向传播算法,因此我们重点关注卷积的导数性质:
假设 。
, , 。函数 为一个标量函数。
则由 有:
可以看出, 关于 的偏导数为 和 的卷积 :
同理得到:
当 或 时, ,即相当于对 进行 的零填充。从而 关于 的偏导数为 和 的宽卷积 。
用互相关的“卷积”表示,即为(注意 宽卷积运算具有交换性性质 ):
在全连接前馈神经网络中,如果第 层有 个神经元,第 层有 个神经元,连接边有 个,也就是权重矩阵有 个参数。当 和 都很大时,权重矩阵的参数非常多,训练的效率会非常低。
如果采用卷积来代替全连接,第 层的净输入 为第 层活性值 和滤波器 的卷积,即:
根据卷积的定义,卷积层有两个很重要的性质:
由于局部连接和权重共享,卷积层的参数只有一个m维的权重 和1维的偏置 ,共 个参数。参数个数和神经元的数量无关。此外,第 层的神经元个数不是任意选择的,而是满足 。
卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。
特征映射(Feature Map)为一幅图像(或其它特征映射)在经过卷积提取到的特征,每个特征映射可以作为一类抽取的图像特征。 为了提高卷积网络的表示能力,可以在每一层使用多个不同的特征映射,以更好地表示图像的特征。
在输入层,特征映射就是图像本身。如果是灰度图像,就是有一个特征映射,深度 ;如果是彩色图像,分别有RGB三个颜色通道的特征映射,深度 。
不失一般性,假设一个卷积层的结构如下:
为了计算输出特征映射 ,用卷积核 分别对输入特征映射 进行卷积,然后将卷积结果相加,并加上一个标量偏置 得到卷积层的净输入 再经过非线性激活函数后得到输出特征映射 。
在输入为 ,输出为 的卷积层中,每个输出特征映射都需要 个滤波器以及一个偏置。假设每个滤波器的大小为 ,那么共需要 个参数。
汇聚层(Pooling Layer)也叫子采样层(Subsampling Layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。
常用的汇聚函数有两种:
其中 为区域 内每个神经元的激活值。
可以看出,汇聚层不但可以有效地减少神经元的数量,还可以使得网络对一些小的局部形态改变保持不变性,并拥有更大的感受野。
典型的汇聚层是将每个特征映射划分为 大小的不重叠区域,然后使用最大汇聚的方式进行下采样。汇聚层也可以看做是一个特殊的卷积层,卷积核大小为 ,步长为 ,卷积核为 函数或 函数。过大的采样区域会急剧减少神经元的数量,会造成过多的信息损失。
一个典型的卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。
目前常用卷积网络结构如图所示,一个卷积块为连续 个卷积层和 个汇聚层( 通常设置为 , 为 或 )。一个卷积网络中可以堆叠 个连续的卷积块,然后在后面接着 个全连接层( 的取值区间比较大,比如 或者更大; 一般为 )。
目前,整个网络结构 趋向于使用更小的卷积核(比如 和 )以及更深的结构(比如层数大于50) 。此外,由于卷积的操作性越来越灵活(比如不同的步长),汇聚层的作用变得也越来越小,因此目前比较流行的卷积网络中, 汇聚层的比例也逐渐降低,趋向于全卷积网络 。
在全连接前馈神经网络中,梯度主要通过每一层的误差项 进行反向传播,并进一步计算每层参数的梯度。在卷积神经网络中,主要有两种不同功能的神经层:卷积层和汇聚层。而参数为卷积核以及偏置,因此 只需要计算卷积层中参数的梯度。
不失一般性,第 层为卷积层,第 层的输入特征映射为 ,通过卷积计算得到第 层的特征映射净输入 ,第 层的第 个特征映射净输入
由 得:
同理可得,损失函数关于第 层的第 个偏置 的偏导数为:
在卷积网络中,每层参数的梯度依赖其所在层的误差项 。
卷积层和汇聚层中,误差项的计算有所不同,因此我们分别计算其误差项。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为第 层使用的激活函数导数, 为上采样函数(upsampling),与汇聚层中使用的下采样操作刚好相反。如果下采样是最大汇聚(max pooling),误差项 中每个值会直接传递到上一层对应区域中的最大值所对应的神经元,该区域中其它神经元的误差项的都设为0。如果下采样是平均汇聚(meanpooling),误差项 中每个值会被平均分配到上一层对应区域中的所有神经元上。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为宽卷积。
LeNet-5虽然提出的时间比较早,但是是一个非常成功的神经网络模型。基于LeNet-5 的手写数字识别系统在90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5 的网络结构如图:
不计输入层,LeNet-5共有7层,每一层的结构为:
AlexNet是第一个现代深度卷积网络模型,其首次使用了很多现代深度卷积网络的一些技术方法,比如采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强来提高模型准确率等。AlexNet 赢得了2012 年ImageNet 图像分类竞赛的冠军。
AlexNet的结构如图,包括5个卷积层、3个全连接层和1个softmax层。因为网络规模超出了当时的单个GPU的内存限制,AlexNet 将网络拆为两半,分别放在两个GPU上,GPU间只在某些层(比如第3层)进行通讯。
AlexNet的具体结构如下:
在卷积网络中,如何设置卷积层的卷积核大小是一个十分关键的问题。 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。Inception网络是由有多个inception模块和少量的汇聚层堆叠而成 。
v1版本的Inception模块,采用了4组平行的特征抽取方式,分别为1×1、3× 3、5×5的卷积和3×3的最大汇聚。同时,为了提高计算效率,减少参数数量,Inception模块在进行3×3、5×5的卷积之前、3×3的最大汇聚之后,进行一次1×1的卷积来减少特征映射的深度。如果输入特征映射之间存在冗余信息, 1×1的卷积相当于先进行一次特征抽取 。
④ CNN(卷积神经网络)是什么
在数字图像处理的时候我们用卷积来滤波是因为我们用的卷积模版在频域上确实是高通低通带通等等物理意义上的滤波器。然而在神经网络中,模版的参数是训练出来的,我认为是纯数学意义的东西,很难理解为在频域上还有什么意义,所以我不认为神经网络里的卷积有滤波的作用。接着谈一下个人的理解。首先不管是不是卷积神经网络,只要是神经网络,本质上就是在用一层层简单的函数(不管是sigmoid还是Relu)来拟合一个极其复杂的函数,而拟合的过程就是通过一次次back propagation来调参从而使代价函数最小。
⑤ 卷积神经网络通俗理解
卷积神经网络通俗理解如下:
卷积神经网络(CNN)-结构
① CNN结构一般包含这几个层:
输入层:用于数据的输入
卷积层:使用卷积核进行特征提取和特征映射
激励层:由于卷积也是一种线性运算,因此需要增加非线性映射
池化层:进行下采样,对特征图稀疏处理,减少数据运算量。
全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失
输出层:用于输出结果
② 中间还可以使用一些其他的功能层:
归一化层(Batch Normalization):在CNN中对特征的归一化
切分层:对某些(图片)数据的进行分区域的单独学习
融合层:对独立进行特征学习的分支进行融合
卷积神经网络(CNN)-输入层
① CNN的输入层的输入格式保留了图片本身的结构。
② 对于黑白的 28×28的图片,CNN 的输入是一个 28×28 的二维神经元。
③ 对于 RGB 格式的 28×28 图片,CNN 的输入则是一个3×28×28 的三维神经元(RGB中的每一个颜色通道都有一个 28×28 的矩阵)
2)卷积神经网络(CNN)-卷积层
感受视野
① 在卷积层中有几个重要的概念:
local receptive fields(感受视野)
shared weights(共享权值)
② 假设输入的是一个 28×28 的的二维神经元,我们定义 5×5 的 一个 local receptive fields(感受视野),即 隐藏层的神经元与输入层的 5×5 个神经元相连,这个 5*5 的区域就称之为 Local Receptive Fields,