导航:首页 > 编程大全 > 常用的数据挖掘工具

常用的数据挖掘工具

发布时间:2023-05-15 18:59:38

⑴ 数据挖掘工具有哪些

SQL Server是数据库,但内建数据挖掘功能,若提到工具的话,大概有SAS, SPSS, Statistica(Dell), R, Revolution R...

⑵ 国内有哪些比较好的数据挖掘工具呢

推荐几个吧,不是国内的,但表现力不错

1. Rapid Miner

它是Oracle高级分析数据库的代表。市场领先的公司用它最大限度地发掘数据的潜力,做出准确的预测。该系统配合强大的数据算法,锁定最佳客户。此外,它可识别异常情况和交叉销售机会,让用户能够根据需要运用不同的预测模型。此外,它以所需的方式定制客户画像。

⑶ 数据挖掘免费软件工具有哪些

1.Rapid Miner

Rapid Miner,原名YALE又一个学习环境,是一个用于机器学习和数据挖掘实验的环境,用于研究和实际的数据挖掘任务。毫无疑问,这是世界领先的数据挖掘开源系统。该工具以java编程语言编写,通过基于模板的框架提供高级分析。


它使得实验可以由大量的可任意嵌套的操作符组成,这些操作符在XML文件中是详细的,并且是由快速的Miner的图形用户界面完成的。最好的是用户不需要编写代码。它已经有许多模板和其他工具,让我们可以轻松地分析数据。


2. IBM SPSS Modeler


IBM SPSS Modeler工具工作台最适合处理文本分析等大型项目,其可视化界面非常有价值。 它允许您在不编程的情况下生成各种数据挖掘算法。 它也可以用于异常检测、贝叶斯网络、CARMA、Cox回归以及使用多层感知器进行反向传播学习的基本神经网络。


3.Oracle Data Mining


Oracle。 作为“高级分析数据库”选项的一部分,Oracle数据挖掘功能允许其用户发现洞察力,进行预测并利用其Oracle数据。您可以构建模型来发现客户行为目标客户和开发概要文件。


Oracle Data Miner GUI使数据分析师、业务分析师和数据科学家能够使用相当优雅的拖放解决方案处理数据库内的数据。 它还可以为整个企业的自动化、调度和部署创建SQL和PL / SQL脚本。

⑷ 哪些工具可以用于数据挖掘

1.IBMSPSS
SPSS()是目前最流行的统计软件平台之一。自2015年开始提供统计产品和服务方案以来,该软件的各种高级功被广泛地运用迹搜羡于学习算法、统计分析(包括描述性回归、聚类等)、文本分析、以及与大数据集成等场景中。同时,SPPS允许用户通过各种专业性的扩展,运用Python和R来改进其SPSS语法。
2.R
如前所述,R是一种编程语言,可用于统计计算与图形环境。它能够与UNIX、FreeBSD、Linux、macOS和Windows操作系统相兼容。R可以被运用在诸如:时间序列分析、聚类、以及线性与非线性建模等各种统计分析场景中。同时,作为一种免费的统计计算环境,它还能够提供连贯的系统,各种出色的数据挖掘包,可用于数据分析的图形化工具,以及大量的中间件工具。此外,它也是SAS和IBMSPSS等统计软件的开源解决方案
3.SAS
SAS(StatisticalAnalysisSystem)是数据与文本挖掘(texmining)及优化的合适选择。它能够根据组织的需求和目标,提供了多种分析技术和方法功能。目前,它能够提供描述性漏念建模(有助于对客户进行分类和描述)、预测性建模(便于预测未知结果)和解析性建模(用于解析,过滤和转换诸如电子邮件、注释字段、书籍等非结构化数据)。此外,其姿拍分布式内存处理架构,还具有高度的可扩展性。
4.OracleDataMining
OracleDataMining(ODB)是OracleAdvancedAnalytics的一部分。该数据挖掘工具提供了出色的数据预测算法,可用于分类、回归、聚类、关联、属性重要性判断、以及其他专业分析。此外,ODB也可以使用SQL、PL/SQL、R和Java等接口,来检索有价值的数据见解,并予以准确的预测。

⑸ 开源数据挖掘工具有哪些

1、RapidMiner

该工具是用Java语言编写的,通过基于模板的框架提供先进的分析技术。该款工具最大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。值得一提的是,该工具在数据挖掘工具榜上位列榜首。


另外,除了数据挖掘,RapidMiner还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。更厉害的是它还提供来自WEKA(一种智能分析环境)和R 脚本的学习方案、模型和算法。


RapidMiner分布在AGPL开源许可下,可以从SourceForge上下载。SourceForge是一个开发者进行开发管理的集中式场所,大量开源项目在此落户,其中就包括维基网络使用的MediaWiki。


2、WEKA


WEKA原生的非Java版本主要是为了分析农业领域数据而开发的。该工具基于Java版本,是非常复杂的,并且应用在许多不同的应用中,包括数据分析以及预测建模的可视化和算法。与RapidMiner相比优势在于,它在GNU通用公共许可证下是免费的,因为用户可以按照自己的喜好选择自定义。


WEKA支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。


添加序列建模后,WEKA将会变得更强大,但目前不包括在内。


3、R-Programming


如果我告诉你R项目,一个GNU项目,是由R(R-programming简称,以下统称R)自身编写的,你会怎么想它主要是由C语言和FORTRAN语言编写的,并且很多模块都是由R编写的,这是一款针对编程语言和软件环境进行统计计算和制图的免费软件。R语言被广泛应用于数据挖掘,以及开发统计软件和数据分析中。近年来,易用性和可扩展性也大大提高了R的知名度。


除了数据,它还提供统计和制图技术,包括线性和非线性建模,经典的统计测试,时间序列分析、分类、收集等等。

⑹ 有哪些python数据挖掘工具

1、Numpy:可以供给数组支撑,进行矢量运算,而且高效地处理函数,线性代数处理等。供给真实的数组,比起Python内置列表来说,numpy速度更快。Scipy、Matplottlib、pandas等库都是基于numpy的。由于Numpy内置函数处理数据速度与C语言同一等级,建议使用时尽量用内置函数。
2、Scipy:可以供给真实的矩阵支撑,以及大量根据矩阵的数值计算模块,包含:插值运算、线性代数、图画信号等。
3、Pandas:源于Numpy,供给强壮的数据读写功用,支撑相似sql的增删改查,数据处理函数十分丰富,而且支撑时间序列剖析功用,灵敏地对数据进行剖析与探索,是Python数据挖掘必不可少的东西。
4、Matplotlib:数据可视化最常用,也是最好用的东西之一,Python中闻名的绘图库,首要用于2维作图,只需要简单几行代码就可以生成各式的图标,比如直方图、条形图、散点图等,也可以进行简单的3维绘图。
5、SciKit-Learn:源于Numpy、Scipy和Matplotlib,是一款功用强壮的机器学习Python库,可以供给完整的学习东西箱,使用起来简单。

⑺ 现在市面上有哪些好用的数据挖掘工具或者平台

楼主发现的不错,收藏下。。正愁着没有可以直接API调用的采集存储工具呢,

⑻ 数据挖掘分析工具有哪些好用的

数据分析和数据挖掘并不是相互独立的,数据分析通常是直接从数据库内取出已有信息,进容行一些统计、可视化、文字结论等,最后可能生成一份研究报告性质的东西,以此来辅助决策。但是如果要分析已有信息背后的隐藏信息,而这些信息通过观察往往是看不到的,这是就需要用到数据挖掘,作为分析之前要走的一个门槛。数据挖掘不是简单的认为推测就可以,它往往需要针对大量数据,进行大规模运算,才能得到一些统计学规律。
这里可以用亿信ABI帮助企业发现潜在的信息,挖掘数据的潜在价值。ABI融合了ETL数据处理、数据建模、数据分析、数据填报、数据挖掘等功能。其中数据分析模块支持报表分析、敏捷看板、即席报告、幻灯片、酷屏、数据填报、数据挖掘等多种分析手段对数据进行分析。

⑼ 数据挖掘分析工具有哪些好用的

想了解更多关于丛吵梁数据挖掘分析工具的知识,根据其适用的范围分为两类:专用挖掘工具和通用挖掘工具。

专用数据挖掘工具是针对某个特定领域的问题提供解决方案,在涉及算法的时候充分考虑了数据、需求的特殊性渗运,并作了优化。对任何领域,都可以开发特定的数据挖掘工具。通用数据挖掘工具不区分具体数据碰念的含义,采用通用的挖掘算法,处理常见的数据类型。通用的数据挖掘工具可以做多种模式的挖掘,挖掘什么、用什么来挖掘都由用户根据自己的应用来选择。目前市场上用的比较多的是R语言、SPSS、SAS、Excel表格等。

数据挖掘分析工具市面上有很多,推荐上CDA数据分析师的课程。课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。

⑽ 常用的数据挖掘工具有哪些

1、
Weka
WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
2、
Rapid
Miner
RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
3、
Orange
Orange是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了
Python以进行脚本开发。它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探迟誉的功能。其由C++

Python开发,它的图形库是由跨平台的Qt框架开发。
4、纳漏
Knime
KNIME
(Konstanz
Information
Miner)
是一个用户友好,智能的,并有丰演的开源的数据集成,数据处理,数据分析和数据勘探平台。
5、
jHepWork
jHepWork是一套功能完整的面向对象科学数据分析框架。
Jython宏是用来展示一维和二维直方图的数据。该程序包括许多工具,可以用来和二维三维的科学图形进行互动。
6、
Apache
Mahout
Apache
Mahout

Apache
Software
Foundation
(ASF)
开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在
Apache
在许可下免费使用。该项目已经发展到了它的最二个年头,目前只有一个公共发行版。Mahout
包含许多实现,包括集群、分类、CP
和进化程序。此外,通过使用洞旦烂
Apachehadoop库,Mahout
可以有效地扩展到云中。
7、
ELKI
ELKI(Environment
for
Developing
KDD-Applications
Supported
by
Index-Structures)主要用来聚类和找离群点。ELKI是类似于weka的数据挖掘平台,用java编写,有GUI图形界面。可以用来寻找离群点。
8、
Rattle
Rattle(易于学习的
R
分析工具)提供数据的统计和可视化摘要,将数据转换成容易建模的形式,从数据中构建无监督和监督模型,以图形方式呈现模型的性能,并得出新的数据集。
展开

与常用的数据挖掘工具相关的资料

热点内容
笔记本电脑卡慢怎么处理win10 浏览:77
编程仿真用什么软件 浏览:424
数控编程到哪里找工作 浏览:48
ps滤镜液化膨胀工具 浏览:426
一张表的数据比例是多少 浏览:497
微信绑不了交行信用卡吗 浏览:86
泰住建201764号文件内容 浏览:23
Excel管理文件夹 浏览:427
步进编程控制器如何设置密码 浏览:43
邮件预览能打开压缩文件吗 浏览:615
ps怎么输出透明背景的mp4文件 浏览:930
广安哪里学习数控编程 浏览:899
哪些公司好进行数据分析 浏览:965
被淘汰的网络热词有哪些 浏览:956
炉石传说安卓能不能玩 浏览:715
为什么记事本不能生成c文件 浏览:90
苹果6splus钢化膜有水气 浏览:783
桃花app在哪里下载 浏览:945
wps怎么把表格里两列数据内容合并 浏览:813
熊猫app是什么 浏览:615
© Arrange www.zymseo.com 2015-2021
温馨提示:资料来源于互联网,仅供参考