Ⅰ 关于MATLAB中BP神经网络模型训练后的验证
用法错了。
premnmx函数用于将网络的输入数据或输出数据进行归一化,归一化后的数据将分布在[-1,1]区间内。premnmx语句的语法格式是
[Pn,minp,maxp,Tn,mint,maxt]=premnmx(P,T)
其中P,T分别为原始输入和输出数据,minp和maxp分别为P中的最小值和最大值。mint和maxt分别为T的最小值和最大值。
我们在训练网络时如果所用的是经过归一化的样本数据,那么以后使用网络时所用的新数据也应该和样本数据接受相同的预处理,这就要用到tramnmx。
[Pn]=tramnmx(P,minp,maxp)
Ⅱ 关于MATLAB的bp神经网络模型的训练和验证
可能发生了过度拟合的问题,导致网络泛化能力不足。
你训练的样本波动性很强,但专是你检验的样本波动属性很弱,神经网络在适应变化极大的问题时,效果不太好。
泛化:当某一反应与某种刺激形成条件联系后,这一反应也会与其它类似的刺激形成某种程度的条件联系,这一过程称为泛化。在心理学心理咨询中所谓泛化指的是:引起求助者目前不良的心理和行为反应的刺激事件不再是最初的事件,同最初刺激事件相类似、相关联的事件(已经泛化),甚至同最初刺激事件不类似、无关联的事件(完全泛化),也能引起这些心理和行为反应(症状表现)。
Ⅲ 为什么要对训练好的神经网络进行测试目的是什么测试和训练过程区别是什么
训练得到拟合程度高的网络,测试样本的准确率未必高。一个好的网络应该具有很回好的泛答化能力。
可以这样理解,训练是根据你输入的数据通过修正权值来减小误差得到网络模型,测试是用另外的数据去测试网络的性能。
Ⅳ 如何训练神经网络
1、先别着急写代码
训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。
Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。
由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。
一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。
2、设置端到端的训练评估框架
处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。
在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。获得准确度等衡量模型的标准,用模型进行预测。
这个阶段的技巧有:
· 固定随机种子
使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。
· 简单化
在此阶段不要有任何幻想,不要扩增数据。扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。
· 在评估中添加有效数字
在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。
· 在初始阶段验证损失函数
验证函数是否从正确的损失值开始。例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。
· 初始化
正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。
· 人类基线
监控除人为可解释和可检查的损失之外的指标。尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。
· 设置一个独立于输入的基线
最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。
· 过拟合一个batch
增加了模型的容量并验证我们可以达到的最低损失。
· 验证减少训练损失
尝试稍微增加数据容量。
Ⅳ 深度学习中测试数据跟验证数据的区别是什么我不太理解验证数据是干什么的
通常在深度学习中将数据集划分为训练集、验证集和测试集。训练数据是用来训练神经网络模型的数据,验证数据的作用是:在神经网络训练的过程中不断测试模型的误差,验证数据的误差随着神经网络模型训练的次数增加会呈现先减小后增加的数据,所以验证数据的误差会存在一个拐点,当达到这个拐点时停止神经网络的训练,这时得到的神经网络的误差最小。而测试数据就是用来在神经网络训练完毕的时候测试模型的误差的数据。
再通俗易懂的举例形容如下
训练集:相当于教材或例题,训练集在我们的模型过程中起的作用就是更新模型的参数,用以获得更好的性能,其行为表现就是让我们以为模型掌握了相关的知识(规律)。
验证集:相当于模拟考试,只是你调整自己状态的指示器,这种调整的结果(从模拟考到高考),有可能更好,也有可能更糟糕。验证集的存在是为了从一堆可能的模型中,帮我们选出表现最好的那个,可用来选超参数。
测试集:相当于高考,其特点是一考定终身,不给改的机会。训练集用来评估模型最终的性能;当多个模型进行对比试验验证模型性能时,多个模型应该在相同的测试集上面进行对比,这样才有效。就好比甲做A地区的卷子考了600分,乙做B地区的卷子考了590分,能不能说甲比乙成绩高,答案是不能。此外,请勿对测试数据进行训练。 如果评估指标取得了意外的好结果,则可能表明不小心对测试集进行了训练。例如,高准确率可能表明测试数据泄露到了训练集。
另:常见的划分原则有交叉验证法、留出法。
Ⅵ BP神经网络是怎么训练的
就是将训练样本集划分为两部分,测试集和验证集,仅用测试集训练,每次训练后用验证集代入,求其误差和,当训练误差不断减小而验证误差却增加时,可以考虑算法终止,再训练可能就会过拟合。
希望你能看明白