导航:首页 > 编程大全 > matlabsimulink神经网络

matlabsimulink神经网络

发布时间:2023-05-14 21:28:35

⑴ matlab有神经网络算法现成的包吗

是哗御的,Matlab提供了神经网络工具箱,其中包括多种神经网络算法和函数。用户可以使用这些现成的包来构建、训练和测试神经网络模型,以实现各种任务,如分类、回归、聚类等。神经网络工具箱还提供了可视化工具和交互式界面,以简化神经网络建模和分析的过程。除了常见的前馈神经网络、反馈神经网络和自组织神经网络,Matlab神经网络工具箱还包括以下算法和函数:

1. 卷积神经网络(Convolutional Neural Networks, CNNs):用于处理图像、视频等数据的神经网络结构。

2. 循环神经网络(Recurrent Neural Networks, RNNs):用于处理序列数据的神经网络结构,如文本、语音等。

3. 长短时记忆网络(Long Short-Term Memory Networks, LSTM):一种特殊的循环神经网络,用于处理长序列数据的模型。

4. 限制玻尔兹曼机(Restricted Boltzmann Machines, RBMs):一种用于学习数据分布的无监督学习模型。

5. 自编码器(Autoencoder):一种用于学习数据表征的模型,可以用于压缩、降噪和特乱敏岩征提取等任务。

6. 深度强化学习(Deep Reinforcement Learning):结合深度学习和强化学习的技术,用于解决复杂的决策问题。

此外,Matlab还提供了丰富的神经网络函数库,用于模型初始化、训练、调试和评估等拿尺方面的操作。用户可以根据具体需求选择适合的算法和函数,进行定制化的神经网络建模和分析。

⑵ matlab神经网络工具箱怎么效果好

导入数据:选择合适的数据,一定要选数值矩阵形式
在这里插入图片描述在这里插入图片描述

进行训练
在这里插入图片描述

接下来就点next,选择输入输出,Sample are是选择以行还是列放置矩阵的,注意调整

在这里插入图片描述

接下来一直next,在这儿点train

在这里插入图片描述

查看结果

在这里插入图片描述

导出代码:再点next,直到这个界面,先勾选下面的,再点Simple Script生成代码
在这里插入图片描述

使用训练好的神经网络进行预测
使用下方命令,z是需要预测的输入变量,net就是训练好的模型

在这里插入图片描述

再将结果输出成excel就行啦

在这里插入图片描述

打开CSDN,阅读体验更佳

使用MATLAB加载训练好的caffe模型进行识别分类_IT远征军的博客-CSDN...
在进行下面的实验前,需要先对数据进行训练得到caffemodel,然后再进行分类识别 c_demo.m function [scores, maxlabel] = c_demo(im, use_gpu) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('/home/...
继续访问
MATLAB调用训练好的KERAS模型_LzQuarter的博客
下载了链接中的“kerasimporter.mlpkginstall”文件后,在matlab内用左侧的文件管理系统打开会进入一个页面,在该页面的右上角有安装的按钮,如果之前安装一直失败,可以通过这个安装按钮的下拉选项选择仅下载 下载还是有可能要用到VPN,但是相比...
继续访问
最新发布 matlab神经网络预测数据,matlab神经网络工具箱
Matlab语言是MathWorks公司推出的一套高性能计算机编程语言,集数学计算、图形显示、语言设计于一体,其强大的扩展功能为用户提供了广阔的应用空问。它附带有30多个老塌工具箱,神经网络工具箱就是其中之一。谷歌人工智能写作项目:神经网络伪原创。
继续访问
matlab神经网络工具箱系统预测
matlab神经网络工具箱系统预测 有原始数据 根据原始数据预测未来十年内的数据
matlab预测控制工具箱
matlab预测控制工具箱,在学习预测控制的过程中翻译的matlab自带的示例,希望对大家有所帮助 matlab预测控制工具箱,在学习预测控制的过程中翻译的matlab自带的示例,希望对大家有所帮助
用matlab做bp神经网络预测,神经网络预测matlab代码
我觉得一个很大的原因是你预测给的输入范围(2014-)超出了训练数据的输入范围(2006-2013),神经网络好像是具有内插值特性,不能超出,你可以把输入变量-时间换成其他的变量,比如经过理论分析得出的某些影响因素,然后训练数据要包括大范围的情况,这样可以保证预测其他年份的运量的时候,输入变量不超出范围,最后预测的时候给出这几个影响因素的值,效果会好一点。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。
继续访问

BP神经网络预测实例(matlab代码,神经网络工具箱)
目录辛烷值的预测matlab代码实现工具箱实现 参考学习b站: 数学建模学习交流 bp神经网络预测matlab代码实现过程 辛烷值的预测 【改编】辛烷值是汽油最重要的品质指标,传统的实验室检测方法存在样品用量猜者大,穗含薯测试周期长和费用高等问题,不适用于生产控制,特别是在线测试。近年发展起来的近红外光谱分析方法(NIR),作为一种快速分析方法,已广泛应用于农业、制药、生物化工、石油产品等领域。其优越性是无损检测、低成本、无污染,能在线分析,更适合于生产和控制的需要。实验采集得到50组汽油样品(辛烷值已通过其他方法测
继续访问

用matlab做bp神经网络预测,matlab人工神经网络预测
ylabel('函数输出','fontsize',12);%画出预测结果误差图figureplot(error,'-*')title('BP网络预测误差','fontsize',12)ylabel('误差','fontsize',12)xlabel('样本','fontsize',12)。三、训练函数与学习函数的区别函数的输出是权值和阈值的增量,训练函数的输出是训练好的网络和训练记录,在训练过程中训练函数不断调用学习函数修正权值和阈值,通过检测设定的训练步数或性能函数计算出的误差小于设定误差,来结束训练。.
继续访问
matlab训练神经网络模型并导入simulink详细步骤
之前的神经网络相关文章: Matlab-RBF神经网络拟合数据 Matlab RBF神经网络及其实例 4.深度学习(1) --神经网络编程入门 本文介绍一下怎么把训练好的神经网络导入到simulink并使用,假定有两个变量,一个输出变量,随机生成一点数据 x1 = rand(1000,1);x2 = rand(1000,1);x = [x1 x2];y = rand(1000,1); 在App里面找到神经网络工具箱 点击Next 选择对应的数据,注意选择好对应的输入和输出,还
继续访问

用matlab做bp神经网络预测,matlab神经网络怎么预测
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。Network可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。如果你所选用的激活函数是线性函数,那么就可以先把输出的表达式写出来,即权向量和输入的矩阵乘积。
继续访问

matlab训练模型、导出模型及VC调用模型过程详解
MATLAB是美国MathWorks公司出品的商业数学软件,为算法开发、数据可视化、数据分析以及数值计算等提供了高级计算语言和交互式环境。随着人工智能的崛起,MATLAB也添加了自己的机器学习工具包,只需要很少的代码或命令就能完成模型训练和测试的过程,训练好的模型也能方便的导出,供VC等调用。本文主要介绍模型训练、导出和调用的整个过程。 软件版本: VC2015,matlab2018a ...
继续访问

matlab神经网络预测模型,matlab人工神经网络预测
谷歌人工智能写作项目:小发猫matlab带有神经网络工具箱,可直接调用,建议找本书看看,或者MATLAB论坛找例子常见的神经网络结构。核心调用语句如下:%数据输入%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%%BP网络训练%%初始化网络结构net=newff(inputn,outputn,[88]);net.trainParam.epochs=100;=0.0
继续访问

在Matlab中调用pytorch上训练好的网络模型
在Matlab中调用pytorch上训练好的网络模型
继续访问

MATLAB_第二篇神经网络学习_BP神经网络
BP神经网络代码实现1. BP神经网络的简介和结构参数1.1 BP神经网络的结构组成1.2 BP神经网络训练界面的参数解读 非常感谢博主wishes61的分享. 1. BP神经网络的简介和结构参数 一种按照误差逆向传播算法训练的多层前馈神经网络用于预测BP神经网络的计算过程:由正向计算过程和反向计算过程组成。 正向传播过程,输入模式从输入层经隐单元层逐层处理,并转向输出层,每一层神经元的状态只影响下一层神经元的状态。 如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各
继续访问

MATLAB神经网络拟合回归工具箱Neural Net Fitting的使用方法
本文介绍MATLAB软件中神经网络拟合(Neural Net Fitting)工具箱的具体使用方法~
继续访问

灰色预测工具箱matlab,Matlab灰色预测工具箱——走过数模
2009-07-02 23:05灰色预测几乎是每年数模培训必不可少的内容,相对来说也是比较简单,这里写了四个函数,方便在Matlab里面调用,分别是GM(1,1),残差GM(1,1),新陈代谢GM(1,1),Verhust自己写得难免有所疏忽,需要的朋友自己找本书本来试验一下。。Gm(1,1)function [px0,ab,rel]=gm11(x0,number)%[px0,ab,rel]=gm...
继续访问
matlab利用训练好的BP神经网络来预测新数据(先保存网络,再使用网络)
1,保存网络。save ('net') % net为已训练好的网络,这里把他从workspace保存到工作目录,显示为net.mat文档。 2,使用网络。load ('net') % net为上面保存的网络,这里把他下载到workspace。y_predict = sim(...
继续访问
数学建模学习(79):Matlab神经网络工具箱使用,实现多输入多输出预测
Matlab神经网络工具箱实现,实现多输入多输出预测
继续访问

热门推荐 如何利用matlab做BP神经网络分析(包括利用matlab神经网络工具箱)
利用MATLAB 进行BP神经网络的预测(含有神经网络工具箱) 最近一段时间在研究如何利用预测其销量个数,在网上搜索了一下,发现了很多模型来预测,比如利用回归模型、时间序列模型,GM(1,1)模型,可是自己在结合实际的工作内容,发现这几种模型预测的精度不是很高,于是再在网上进行搜索,发现神经网络模型可以来预测,并且有很多是结合时间序列或者SVM(支持向量机)等组合模型来进...
继续访问
bp神经网络预测案例python_详细BP神经网络预测算法及实现过程实例
1.具体应用实例。根据表2,预测序号15的跳高成绩。表2国内男子跳高运动员各项素质指标序号跳高成绩()30行进跑(s)立定三级跳远()助跑摸高()助跑4—6步跳高()负重深蹲杠铃()杠铃半蹲系数100(s)抓举()12.243.29.63.452.151402.811.05022.333.210.33.752.21203.410.97032.243.09.03.52.21403.511.4504...
继续访问
如何调用MATLAB训练神经网络生成的网络进行预测
如何调用MATLAB训练神经网络生成的网络问题引出知识准备代码注解 问题引出 如何存储和调用已经训练好的神经网络。 本人前几天在智能控制学习的过程中也遇到了这样的问题,在论坛中看了大家的回复,虽然都提到了关键的两个函数“save”和“load”,但或多或少都简洁了些,让人摸不着头脑(呵呵,当然也可能是本人太菜)。通过不断调试,大致弄明白这两个函数对神经网络的存储。下面附上实例给大家做个说明,希望对跟我有一样问题的朋友有所帮助。 知识准备 如果只是需要在工作目录下保到当前训练好的网络,可以在命令窗口 输入:s
继续访问
matlab训练好的模型怎么用
神经网络

⑶ 神经网络程序如何生成simulink模块

你可以先生成net网穗羡络,经训练猜谈拍后即可调用gensim函数。我给你看一个例子吧:
%训练样本集
%输入向量
P=[756.5745 765.3261 762.9077 762.7337 778.0583 768.4183 753.3221 754.777 869.1892 837.8081 850.121 871.7502 886.9313 896.7662 844.2693 878.671 936.677 953.5296 936.9523 972.7305 969.6961 966.8402 967.3992 991.9504;
20 20 20 20 45 45 45 45 20 20 20 20 45 45 45 45 20 20 20 20 45 45 45 45];
%目标向量
T=[750 750 750 750 750 750 750 750 850 850 850 850 850 850 850 850 950 950 950 950 950 950 950 950];
%输入向量、目标向量归一化
p=(P-[750;20]*ones(1,24))./([950;45]*ones(1,24)-[750;20]*ones(1,24));
t=(T-750)/(950-750);
%创建BP网络:网络含5个隐层和一个输出层
net=newff([0,1;0,1],[5,1],{'tansig','logsig'},'trainlm');
%对网络进行训练
net=train(net,p,t);
%保存网络
save cellnet net
%生成模块
gensim(net,-1)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
首先需要指出的是,newff函数是用来产生新的网络的,侍雹使用时输入向量的维数可以是任意的。
下面是我写的几行命令,newff命令中的minmax(X)决定了新生成网络的输入为5维
%输入向量
X=[0 0.5398 0.5325 0.5324;
0 -0.9341 0.9339 -0.9327;
0 -6.4617 0.8567 0.8850;
0 10.3576 -10.1934 8.9586;
0 10.9531 31.1317 51.2697];
%目标向量
T=[0 10.9630 31.1417 51.2796];
%输入向量、目标向量归一化:你自己补充一下
%创建BP网络:假设网络含5个隐层和一个输出层
net=newff(minmax(X),[5,1],{'tansig','logsig'},'trainlm');
%对网络进行训练
net=train(net,X,T);
%生成模块
gensim(net,-1)

%需要指出的是,上面调用的newff函数的用法是基于MATLABR2007或者早些版本的。MATLABR2008a上调用时会稍微有所不同。你可以用help看看
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
输入输出都是按行归一化的。每一个输入矩阵中,每一列都是一个训练或测试样本,对列输入没有意义的。
我用的是MATLABR2008版的,你的那段程序在语法上除了归一化不正确导致的一些问题和newff调用警告外好像没有其他的bug

⑷ matlab中神经网络怎么使用

可以直接用神经网络工具箱,GUI内设置训练的输入、目标、训练方法、迭代次数等。

⑸ matlab有几种神经网络

常见的有大概三十个吧,包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;还包含PSO(粒子群)、宽差燃灰色神经网络、庆洞模糊网络、概率神经网络、遗传算法优化等慎虚

⑹ 1.如何用MATLAB神经网络工具箱创建BP神经网络模型具体有哪些步骤请高手举实例详细解释下 2.如何把输

%人脸识别模型,脸部模型自己找吧。
function mytest()

clc;
images=[ ];
M_train=3;%表示人脸
N_train=5;%表示方向
sample=[];
pixel_value=[];
sample_number=0;

for j=1:N_train
for i=1:M_train
str=strcat('Images\',num2str(i),'_',num2str(j),'.bmp'); %读取图像,连接字符串形成图像的文件名。
img= imread(str);
[rows cols]= size(img);%获得图像的行和列值。
img_edge=edge(img,'Sobel');

%由于在分割图片中我们可以看到这个人脸的眼睛部分也就是位于分割后的第二行中,位置变化比较大,而且眼睛边缘检测效果很好

sub_rows=floor(rows/6);%最接近的最小整数,分成6行
sub_cols=floor(cols/8);%最接近的最小整数,分成8列
sample_num=M_train*N_train;%前5个是第一幅人脸的5个角度

sample_number=sample_number+1;
for subblock_i=1:8 %因为这还在i,j的循环中,所以不可以用i
block_num=subblock_i;
pixel_value(sample_number,block_num)=0;
for ii=sub_rows:(2*sub_rows)
for jj=(subblock_i-1)*sub_cols+1:subblock_i*sub_cols
pixel_value(sample_number,block_num)=pixel_value(sample_number,block_num)+img_edge(ii,jj);
end
end
end
end
end
%将特征值转换为小于1的值
max_pixel_value=max(pixel_value);
max_pixel_value_1=max(max_pixel_value);
for i=1:3
mid_value=10^i;
if(((max_pixel_value_1/mid_value)>1)&&((max_pixel_value_1/mid_value)<10))
multiple_num=1/mid_value;
pixel_value=pixel_value*multiple_num;
break;
end
end

% T 为目标矢量
t=zeros(3,sample_number);
%因为有五类,所以至少用3个数表示,5介于2的2次方和2的3次方之间
for i=1:sample_number
% if((mod(i,5)==1)||(mod(i,5)==4)||(mod(i,5)==0))
if(i<=3)||((i>9)&&(i<=12))||((i>12)&&(i<=15))
t(1,i)=1;
end
%if((mod(i,5)==2)||(mod(i,5)==4))
if((i>3)&&(i<=6))||((i>9)&&(i<=12))
t(2,i)=1;
end
%if((mod(i,5)==3)||(mod(i,5)==0))
if((i>6)&&(i<=9))||((i>12)&&(i<=15))
t(3,i)=1;
end
end

% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真

% 定义训练样本
% P 为输入矢量
P=pixel_value'
% T 为目标矢量
T=t
size(P)
size(T)
% size(P)
% size(T)

% 创建一个新的前向神经网络
net_1=newff(minmax(P),[10,3],{'tansig','purelin'},'traingdm')

% 当前输入层权值和阈值
inputWeights=net_1.IW{1,1}
inputbias=net_1.b{1}
% 当前网络层权值和阈值
layerWeights=net_1.LW{2,1}
layerbias=net_1.b{2}

% 设置训练参数
net_1.trainParam.show = 50;
net_1.trainParam.lr = 0.05;
net_1.trainParam.mc = 0.9;
net_1.trainParam.epochs = 10000;
net_1.trainParam.goal = 1e-3;

% 调用 TRAINGDM 算法训练 BP 网络
[net_1,tr]=train(net_1,P,T);

% 对 BP 网络进行仿真
A = sim(net_1,P);
% 计算仿真误差
E = T - A;
MSE=mse(E)

x=[0.14 0 1 1 0 1 1 1.2]';
sim(net_1,x)

⑺ 怎么将matlab中训练好的神经网络simulink

怎么将matlab中训练好的配茄神经网络simulink
y=sim(net,p); net是哪卖陆训练好的网络,p是输入,y就是你要的输出。
\ 关键是李顷p输入的列维一定要对。

⑻ MATLAB算法与SIMULINK 仿真的关系

我学自动化的,用MATLAB主竖盯要是进行数值计算,算法方面有很多工具余缓和箱可以在MATLAB里运行,如遗传算法工具箱、神经网络工具箱;simulink是MATLAB里面的仿真模块,主要是基于MALAB强大的计算能力建立起来的,绘制系统框图然哪好后进行系统分析,通信方面还可以进行信号的处理和分析,这方面我们自动化就用得比较少了。

⑼ 神经网络在simulink中的实现

1.T=[1 1 1;1 1 1];目标函数是2维的,说明输出可为2个,所以net=newff(minmax(X),[5 2],{'tansig','purelin'},'trainlm');你这个程序少了参数设置部分:net.trainParam.epochs=50;net.trainparam.goal=1e-3;还有其他参数可设置。
2.你建好个这个模型是对X=[1 2 3;-1 1 1;1 3 2];T=[1 1 1;1 1 1];控制的,对你那个模型当然不行,你这个程序连个接口都没有没法用SIMULINK,getsim()这个函数我不了解,你要是仿真可用.M文件编个S-FUNCTION,可用于模型仿真。

阅读全文

与matlabsimulink神经网络相关的资料

热点内容
linux下增加路由命令 浏览:419
iphone冲刷固件 浏览:604
网络机房平面图 浏览:579
笔记本电脑卡慢怎么处理win10 浏览:77
编程仿真用什么软件 浏览:424
数控编程到哪里找工作 浏览:48
ps滤镜液化膨胀工具 浏览:426
一张表的数据比例是多少 浏览:497
微信绑不了交行信用卡吗 浏览:86
泰住建201764号文件内容 浏览:23
Excel管理文件夹 浏览:427
步进编程控制器如何设置密码 浏览:43
邮件预览能打开压缩文件吗 浏览:615
ps怎么输出透明背景的mp4文件 浏览:930
广安哪里学习数控编程 浏览:899
哪些公司好进行数据分析 浏览:965
被淘汰的网络热词有哪些 浏览:956
炉石传说安卓能不能玩 浏览:715
为什么记事本不能生成c文件 浏览:90
苹果6splus钢化膜有水气 浏览:783

友情链接