Ⅰ 数据仓库的含义,数据仓库和数据库的区别.
什么是数据仓库
目前,数据仓库一词尚没有一个统一的定义,著名的数据仓库专家 W.H.Inmon 在其著作《 Building the Data Warehouse 》一书中给予如下描述:数据仓库( Data Warehouse )是一个面向主题的( Subject Oriented )、集成的( Integrate )、相对稳定的( Non-Volatile )、反映历史变化( Time Variant )的数据集合,用于支持管理决策。 对于数据仓库的概念我们可以从两个层次予以理解,首先,数据仓库用于支持决策,面向分析型数据处理,它不同于企业现有的操作型数据库;其次,数据仓库是对多个异构的数据源有效集成,集成后按照主题进行了重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。
数据库是一个装数据(信息的原材料)的地方。
数据仓库是一种系统,这种系统也是用数据库装东西。
数据仓库系统(用数据库装东西)与其他基础业务系统(例如财务系统、销售系统、人力资源系统等,也是用数据库装东西)的区别是:
基础业务系统的特点是各管各的,例如财务系统生产了白菜,那么用一个数据库来装,人力资源系统生产了猪肉,再用一个数据库来装。我要做一道菜,需要分别到各个数据库去取,比较麻烦(现实的情况是大部分时候让种菜的农民伯伯送过来,但送过来的东西不一定是我想要的,而且不同的时候我想要不同的东西,经常会被农民伯伯骂,弄得双方都不开心)。另外一方面,各个数据库中放的是一些比较原始的东西,我要拿过来做菜,还需要经过很麻烦的清洗过程,一不小心里面可能就藏着一条大青虫。
那么,数据仓库系统就是建立一个大的超市,将各地农民伯伯出产的东西收集过来,清洗干净,分门别类地放好。这样,你要哪种菜的时候,直接从超市里面拿就可以了。
早期一直不理解数据仓库是什么困惑得很。
宏观一点讲,数据仓库就是堆放公司所有数据的地方,之所以把数据都堆在一起,是为了从中间找到有价值的东西。
数据仓库更多的是一个概念,不要把数据仓库想成那些号称是数据仓库的软件产品们。
数据仓库的物理上就是数据库。相对业务系统数据库叫 OLTP 数据库(用于业务处理),这种数据库叫 OLAP 数据库(用于业务分析)。
数据仓库的概念是针对以下基本需求产生的:
公司的业务系统很多,业务系统的历史数据不方便查询。不同的业务系统往往管理部门不同,地域不同。能不能将所有这些数据集中起来,再淘淘有没有有意义的业务规律。
数据仓库数据库往往很大,因为公司所有的数据集中得越多,越能淘到有价值的发现。例如随便就 100G 以上。
数据仓库的组成十分繁杂,既有业务系统的历史数据,又有人事、财务数据,还要自己建一些基础性的数据,例如,公共假期数据、地理信息、国家信息等等。
数据仓库概念包含从业务生产系统采集数据的程序,这个程序还不能影响业务系统的运行。(属于所谓 “ETL” 过程)
数据仓库包括业务系统长期的历史数据,例如 5 年,用来分析。(所谓 “ODS” 数据)
数据仓库包括针对某相业务值(例如销售量)重新打上标签的业务流水数据。(所谓 “ 事实表 ” 、 “ 维度表 ” )。
数据仓库概念兴许还包含报表生成工具(所谓 “BI” 工具)。这些工具能够达到几年前所谓 DSS (决策分析)的效果。
数据仓库的客户历史资量的分析,也许又与 CRM 系统粘点边。
总之,一点,一个公司想针对已有的历史业务数据,充分的利用它们,那么就上数据仓库项目。至于哪些吓唬人的大写字母的组合,只是达到这个目标的科学技术罢了。
牢记住数据仓库的基本需求,不要被供应商吓着。
数据仓库可以说是决策支持系统,能帮助老板了解企业的整体全貌,看到数据仓库提供的经过整理统计归纳的数据后老板凭自己的管理经验可以发现企业的问题或困难或成功因素在哪一方面,然后可以不断的追溯数据,直到确定到最具体的细节上,这样能够不断提升老板或管理层的管理水平,不断改善企业的管理。我们知道的最好的一个例子就是美国某大型超市啤酒和尿布的故事。
沃尔玛公司在美国的一位店面经理曾发现,每周,啤酒和尿布的销量都会有一次同比攀升,一时却搞不清是什么原因。后来,沃尔玛运用商业智能( Business Intelligence ,简称BI)技术发现,购买这两种产品的顾客几乎都是 25 岁到 35 岁、家中有婴儿的男性,每次购买的时间均在周末。沃尔玛在对相关数据分析后得知,这些人习惯晚上边看球赛、边喝啤酒,边照顾孩子,为了图省事而使用一次性的尿布。得到这个结果后,沃尔玛决定把这两种商品摆放在一起,结果,这两种商品的销量都有了显著增加。
数据库是数据仓库的基础。数据仓库实际上也是由数据库的很多表组成的。需要把存放大量操作性业务数据的数据库经过筛选、抽取、归纳、统计、转换到一个新的数据库中。然后再进行数据展现。老板关注的是数据展现的结果。
数据仓库 (DATA WAREHOUSE/DATA MART) 的另一重要概念是数据从不同的数据库 (DATABASES) 里调出经过 ETL 工具 ( 如 POWERCENTRE , DECISIONSTREAM, SQL SERVER 2000 DTS, SQL SERVER 2005 SSIS) 过程进行清理,确证,整合并设计成多维 (dimensional framework) 。 以保证数据的正确、准确、完整 , 这是非常重要的一点。
我们现在的项目稳定运行了 6 年多,一直自己开发,最近慢慢开始使用 datastage 。很多大型项目之所以用工具,是因为工具的本身的特点是开发快,效率相对还可以,让你更好地有精力用在业务、数据库的优化以及数据测试上,和数据质量本身并没有关系。
而数据质量关系最密切的还是从设计(架构、模型等)、业务关系的理解、项目管理(含和客户的交流,以及遵从开发流程和测试流程)等一系列项目工程的过程。这也是为什么很多项目使用了 ETL 工具,但是数据质量还是提高不大的主要原因。
数据仓库的作用重在数据的集中管理。集中管理的最终目的是为了分析,预测。
所谓的 ETL 。不过是数据仓库的构建的一个必须过程。数据的抽取转换与装载,都是为了集中管理所做的基础工作,这些数据与动作的描述,都会有有响应的元数据进行描述。
在数据仓库建模的过程,我们一般都是采用多维模型,如星形,雪花型等等,这样做最大的特点就是效率高,数据的冗余度低。所以,把 OLAP 与数据仓库混为一谈我认为是片面的解释。
我们也可以选择业务逻辑模型建立数据仓库,这是很早以前的做法了,特点就是效率不高,数据的冗余度高,但他能实现非常难以表达的业务逻辑设计。
基于数据仓库最重要的是分析与预测,我认为,历史现在将来是数据仓库的精华。。
基于数据仓库的 DM , OLAP 都是为了分析与预测。为了让使用企业单位更好的把握现在,预测将来,因此他最实效的说法我认为是给决策者与管理者进行决策管理提供分析与预测的依据。
另外,数据仓库还会起到历史数据分类归档的目的(就像图书馆一样),届时可以通过检索条件方便的查询历史信息;而同类信息在 OLTP 中早已被更新了。
至于它的分析功能,就象气象考古研究工作,在不同深度的冰川中保存着当时的气象信息,否则拿什么预测气候变化趋势呢!
不过,要有相当的管理及技术储备以及管理层的强力支持才可以。先有需求,并具备了必要条件才可上马,否则您的数据仓库将不是超市而是个垃圾堆, “garbage in , then garbage out” !
所以,我认为是企业信息化建设及科学管理水平的提高催生了数据仓库的必然产生,不要赶时髦,炒概念,关键还是冷静分析自己企业的现实状况是否到了必须部署数据仓库的阶段了!
至于如何说服管理者,则需要您的努力了,不要站在您技术人员的立场阐述问题, CEO 对技术问题不感兴趣,站在他们的角度考虑问题,回答诸如 “ 我们投入如此大的资金、人力,同时面对升级系统的巨大风险,目的何在? ” 记住, CEO 和 CFO (甚至包括 CIO )是更希望用数字说话的,您分析一下公司的管理决策流程,就可以向他们提出很有价值的决策支持报表,而部门经理(或类似人员)每季度也不必头大的制作相关分析报表了,节省的精力可以做更多有价值的事情,这就是企业人力资源利用率的巨大提升,可以节省多少银子,恐怕 CEO 不会用你提示了吧!
Ⅱ 数据仓库中,数据是多维度的立体结构,数据来源于单个业务数据库对么
数据仓库中数据的来源是多源的,但最大中没量的、最基本的就卖慎纳是业务数据库,例如:生产过程的实绩、质量管理中的数据;当然还有一些是其它的,例如:人力资源、成本、采购等。
但关键的是需要将不同的业务数据,根孝茄据一定的键字、规则进行重构,而这个重构是根据企业对于这些数据的理解进行的。
Ⅲ 数据挖掘是从“数据库”还是“数据仓库”抽取数据
从数据仓库。数据仓库是数据库的一种表现形式,但是与传统数据库概念相比有着更庞大的数据量,更多的数据主题与数据维度,同时物理涉设计也偏向于海量数据并行处理,与事物处理型数据库差异很大。数据挖掘无论是所需要的基础数据还是处理性能,都只有数据仓库这种价格,才能够满足,或者说传统概念的数据库,不具备,也没有必要使用数据挖掘。
Ⅳ 数据库和数据仓库的区别与联系
数据库是数据根据需求设计的数据表的集合,而数据仓库只是储存数据的平台。数据仓库可以看成一个储存数据的仓库;而数据库是一个图书馆,储存的书是各种数据表。
Ⅳ 数据库根数据仓库有什么区别,如何区分
简而言之,数据库是面向事务的设计,数据仓库是面向主题设计的。
数据库一般存储在线交易数据闷孝,数据仓库存储的一般是历史数据。
数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。
数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID。
单从概念上讲,有些晦涩。任何技术都是为应用服务的,结合应用可以很容易地理解。以银行业务为例。数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记帐。数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。比如,某银行某分行一个月扰孙发生多少交易,该分行当前存款余额是多少。如果存款又多,蚂李稿消费交易又多,那么该地区就有必要设立ATM了。
显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。而分析系统是事后的,它要提供关注时间段内所有的有效数据。这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了。
数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。那么,数据仓库与传统数据库比较,有哪些不同呢?让我们先看看W.H.Inmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合。
“面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的。这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块。也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的。
“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。
“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。
数据仓库的出现,并不是要取代数据库。目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。
补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案。
1.效率足够高。客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。
2.数据质量。客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。
3.扩展性。之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行。主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了。
Ⅵ 数据库与数据仓库的区别
数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储在回线交易数据,数据仓库存储的一答般是历史数据。
“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。
“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。
数据仓库的出现,并不是要取代数据库。数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。
目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。