导航:首页 > 编程大全 > python提取网页表格数据库

python提取网页表格数据库

发布时间:2023-05-01 04:38:59

㈠ 如何使用Python从Excel中获取数据粘贴到网页,然后再获取网页内容

网页的内容复制到Excel里面漏唯去的方法如下: 打开网页,定位到需要复制内容的页面,键盘Ctrl+A全选,Ctrl+C复制当前页面。 启动Excel软件,Ctrl+V粘贴到Excel的空白裂卖工作表中,肆搜逗这样,网页的内容就会被复制到Excel中

㈡ python如何读取网页中的数据

用Beautiful Soup这类解析模块:

  1. Beautiful Soup 是用Python写的一个HTML/XML的解析器,它可以很好的处理不规范标记并生成剖析树(parse tree);

  2. 它提供简单又常用的导航(navigating),搜索以及修改剖析树的操作;

  3. 用urllib或者urllib2(推荐)将页面的html代码下载后,用beautifulsoup解析该html;

  4. 然后用beautifulsoup的查找模块或者正则匹配将你想获得的内容找出来,就可以进行相关处理了,例如:


    html='<html><head><title>test</title></head><body><p>testbody</p></body></html>'
    soup=BeautifulSoup(html)
    soup.contents[0].name
    #u'html'
    soup.comtents[0].contents[0].name
    #u'head'
    head=soup.comtents[0].contents[0]
    head.parent.name
    #u'html'
    head.next
    #u'<title>test</title>

㈢ 不用web框架,怎么通过python获取网页表单提交的数据,并传入数据库啊,求大佬们帮帮忙

你想自己实现 wsgi 还是使用 wigiref 模块?你需要了解wsgi 基础,所有表单数据段孝侍 可以通过慎烂 wsgi 的入口函数中的参数 envrion['wsgi.input'握吵] 获取到

wsgi参考资料:
https://www.python.org/dev/peps/pep-3333/
https://pep-3333-wsgi.readthedocs.io/en/latest/

㈣ 如何用python抓取网页数据库

最简单可以用urllib,python2.x和python3.x的用法不同,以python2.x为例:

import urllib
html = urllib.open(url)
text = html.read()
复杂些可以用requests库,支持各种请求类型,支持cookies,header等
再复杂些的可以用selenium,支持抓取javascript产生的文本

㈤ python如何提取网页信息

page = urllib2.urlopen(url)

contents = page.read()

#获搏或旁得了整个网页的内容也团尘就是源代码基橡

print(contents)

㈥ python进行数据库查询时怎么把结果提取出来

  1. 设置索引字段。在开始提取数据前,先将member_id列设置为索引字段。然后开始提取数据。

  2. 按行提取信息。第一步是按行提取数据,例如提取某个用户的信息。

  3. 按列提取信息。第二步是按列提取数据,例如提取用户工作年限列的所有信息。

  4. 按行与列提取信息。第三步是按行和列提取信息,把前面两部的查询条件放在一起,查询特定用户的特定信息。

  5. 在前面的基础上继续增加条件,增加一行同时查询两个特定用户的贷款金额信息。

  6. 在前面的代码后增加sum函数,对结果进行求和。

  7. 除了增加行的查询条件以外,还可以增加列的查询条件。

  8. 多个列的查询也可以进行求和计算,在前面的代码后增加sum函数,对这个用户的贷款金额和年收入两个字段求和,并显示出结果。

  9. 提取特定日期的信息。数据提取中还有一种很常见的需求就是按日期维度对数据进行汇总和提取,如按月,季度的汇总数据提取和按特定时间段的数据提取等等。

  10. 设置索引字段。首先将索引字段改为数据表中的日期字段,这里将issue_d设置为数据表的索引字段。按日期进行查询和数据提取。

㈦ 如何用python连接 tableau 数据库,然后读取数据

选择“数据”>“连接到数据”或按键盘上的 Ctrl + D。也可以在开始页面上选择“连接到数据”选项。
2. 在“连接到数据”页面上,选择要连接的数据类型。也可以选择保察毕存的数据连接(TDS 文件)打开一个 Tableau Server 数据源。
3. 连接到数据的另一种方式是从工作簿导入。工作簿可以包含与不同数据源的多个连接。若要从工作簿导入连接,请在“连接到数据”对话框中单击“选择保存的连接”选项卡底部的“从工作簿导入”按钮。
显示连接信息
可以显示有关连接的信息,方法是在“数据”菜单中选择数据源,然后选择“属性”。下面显示了示例数据源的属性。
连接到自定义 SQL 查询
对于大多数关系数据源,可以连接到特定查询,而非整个数据源。
在连接对话框中选择“自定义 SQL”。
在文本框中键入或粘贴查询。单击文本框右上角的“浏览”按钮 会打开更大的编辑窗口,可进行更复杂的穗衡查询或添加参数。
注意:完成连接后,Tableau 的数据窗口只显示相关字段。
如果 SQL 查询引用重复列,则在尝试使用 Tableau 中的列之一时,可能会出现错误。即使查询有效,也会发生这种情况。例如,考虑以下查询:
SELECT * from authors, titleauthor where authors.au_id = titleauthor.au_id 该查询有效,但因为 au_id 字段在“authors”表和“titleauthor”表中都存在,因此该字段不明确。Tableau 将连接到查询,但只要尝试使用 au_id 字段,就会出现错误。原因是 Tableau 不知道要引用哪个表。
编辑连接
在“数据”菜单中选择数据源,然后选择“编辑连接”。猜没做

㈧ 怎么使用python来爬取网页上的表格信息

稍微说一下背景,当时我想研究蛋白质与小分子的复合物在陆洞空间三维结构上的一些规律,首先得有数据啊,数据从哪里来?就是从一个涵盖所有已经解析三维结构的蛋白质-小分子复合物的数据库里面下载。这时候,手动一个个去下显然是不可取的,我们需要写个脚本,能从特定的网站选择性得批量下载需要的信息。python是不错的选择。

import urllib #python中用于获取网站的模块
import urllib2, cookielib

有些网站访问时需要cookie的,python处理cookie代码如下:
cj = cookielib.CookieJar ( )
opener = urllib2.build_opener( urllib2.HttpCookieProcessor(cj) )
urllib2.install_opener (opener)

通常我们需要在网站中搜索得到我们需要的信息,这里分为二种情况:

1. 第一种,直接改变网址就可以得到你想要搜索的页面:

def GetWebPage( x ): #我们定义一个获取页面的函数,x 是用于呈递你在页面中搜索的内容的参数
url = 'http://xxxxx/xxx.cgi?&' + ‘你想要搜索的参数’ # 结合自己页面情况适当修改
page = urllib2.urlopen(url)
pageContent = page.read( )
return pageContent #返回的是HTML格式的页面信息

2.第二种,你需要用到post方法,将你搜索的内容放在postdata里面,然后返回你需要的页面

def GetWebPage( x ): #我们定义一个获取页面的函数,x 是用于呈递你在页面中搜索的内容的参数
url = 'http://xxxxx/xxx' #这个网址是你进入搜索界面的网址
postData = urllib.urlencode( { 各种‘post’参数输入 } ) #这里面的post参数输入需要自己去查
req= urllib2.Request (url, postData)
pageContent = urllib2.urlopen (req). read( )
return pageContent #返回的是HTML格式的页面信息

在获取了我们需要的网页信息之后,我们需要从获得的网页中进一步获取我们需要的信息,这里我推荐使用 BeautifulSoup 这个模块, python自带的没有,可以自行网络谷歌下载安装。 BeautifulSoup 翻译就是‘美味的汤’,你需要做的是从一锅汤里面找到你喜欢吃的东西。

import re # 正则表达式,用于匹配字符
from bs4 import BeautifulSoup # 导入BeautifulSoup 模块

soup = BeautifulSoup(pageContent) #pageContent就是上面我们搜索得到的页面

soup就是 HTML 中所有的标签(tag)BeautifulSoup处理格式化后的字符串,一个标准的tag形式为:

hwkobe24

通过一些过滤方法,我们可以从soup中获取我们需要的信息:

(1) find_all ( name , attrs , recursive , text , **kwargs)
这里面,我们通过添加对标签的约束来获取需要的标签列表, 比如 soup.find_all ('p') 就是寻找名字为‘p’的 标签,而soup.find_all (class = "tittle") 就是找到所有class属性为"tittle" 的标签,以及soup.find_all ( class = re.compile('lass')) 表示 class属性中包含‘lass’的所有标签,这里用到了正则表达式(可以自己学习一下,非常有用滴)

当我们获取了所有想要标签的列表之后,凳悉举遍历这个列表,再获取标签中你需要的内容,通常我们需要标签中的文字部分,也就是网页中显示出来的文字,代码如下:

tagList = soup.find_all (class="tittle") #如果标签比较复杂,可以用多个过滤条件使过滤更加枣碧严格

for tag in tagList:
print tag.text
f.write ( str(tag.text) ) #将这些信息写入本地文件中以后使用

(2)find( name , attrs , recursive , text , **kwargs )

它与 find_all( ) 方法唯一的区别是 find_all() 方法的返回结果是值包含一个元素的列表,而 find() 方法直接返回结果

(3)find_parents( ) find_parent( )

find_all() 和 find() 只搜索当前节点的所有子节点,孙子节点等. find_parents() 和 find_parent() 用来搜索当前节点的父辈节点,搜索方法与普通tag的搜索方法相同,搜索文档搜索文档包含的内容

(4)find_next_siblings() find_next_sibling()

这2个方法通过 .next_siblings 属性对当 tag 的所有后面解析的兄弟 tag 节点进代, find_next_siblings() 方法返回所有符合条件的后面的兄弟节点,find_next_sibling() 只返回符合条件的后面的第一个tag节点

(5)find_previous_siblings() find_previous_sibling()

这2个方法通过 .previous_siblings 属性对当前 tag 的前面解析的兄弟 tag 节点进行迭代, find_previous_siblings()方法返回所有符合条件的前面的兄弟节点, find_previous_sibling() 方法返回第一个符合条件的前面的兄弟节点

(6)find_all_next() find_next()

这2个方法通过 .next_elements 属性对当前 tag 的之后的 tag 和字符串进行迭代, find_all_next() 方法返回所有符合条件的节点, find_next() 方法返回第一个符合条件的节点

(7)find_all_previous() 和 find_previous()

这2个方法通过 .previous_elements 属性对当前节点前面的 tag 和字符串进行迭代, find_all_previous() 方法返回所有符合条件的节点, find_previous()方法返回第一个符合条件的节点

具体的使用方法还有很多,用到这里你应该可以解决大部分问题了,如果要更深入了解可以参考官方的使用说明哈!

㈨ 如何用Python爬虫抓取网页内容

首先,你要安装requests和BeautifulSoup4,然后执行如下代码.

importrequests
frombs4importBeautifulSoup

iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'

res=requests.get(iurl)

res.encoding='utf-8'

#print(len(res.text))

soup=BeautifulSoup(res.text,'html.parser')

#标题
H1=soup.select('#artibodyTitle')[0].text

#来源
time_source=soup.select('.time-source')[0].text


#来源
origin=soup.select('#artibodyp')[0].text.strip()

#原标题
oriTitle=soup.select('#artibodyp')[1].text.strip()

#内容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#责任编辑
ae=soup.select('.article-editor')[0].text

这样就可以了

㈩ python中如何将表中的数据做成一张表,然后再从中取出数据

第一部分是生成数据表,常见的生成方法有两种,第一种是导入外部数据,第二种是直接写入数据。 Excel 中的文件菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入。
获取外部数据
python 支持从多种类型的数据导入。在开始使用 python 进行数据导入前需要先导入 pandas 库,为了方便起见,我们也同时导入 numpy 库。
1 import numpy as np
2 import pandas as pd
导入数据表
下面分别是从 excel 和 csv 格式文件导入数据并创建数据表的方法。代码是最简模式,里面有很多可选参数设置,例如列名称,索引列,数据格式等等。感兴趣的朋友可以参考 pandas 的
官方文档。

1 df=pd.DataFrame(pd.read_csv(‘name.csv’,header=1))

2 df=pd.DataFrame(pd.read_excel(‘name.xlsx’))

创建数据表
另一种方法是通过直接写入数据来生成数据表,excel 中直接在单元格中输入数据就可以,python 中通过下面的代码来实现。生成数据表的函数是 pandas 库中的 DateFrame 函数,数据表一共有 6 行数据,每行有 6 个字段。在数据中我们特意设置了一些 NA 值和有问题的字段,例如包含空格等。后面将在数据清洗步骤进行处理。后面我们将统一以 DataFrame 的简称 df 来命名数据表。
1 df = pd.DataFrame({‘id’:[1001,1002,1003,1004,1005,1006],
2 ‘date’:pd.date_range(‘20130102’, periods=6),
3 ‘city’:['Beijing ', ‘SH’, ’ guangzhou ', ‘Shenzhen’, ‘shanghai’, 'BEIJING '],
4 ‘age’:[23,44,54,32,34,32],
5 ‘category’:[‘100-A’,‘100-B’,‘110-A’,‘110-C’,‘210-A’,‘130-F’],
6 ‘price’:[1200,np.nan,2133,5433,np.nan,4432]},

7 columns =[‘id’,‘date’,‘city’,‘category’,‘age’,‘price’])

这是刚刚创建的数据表,我们没有设置索引列,price 字段中包含有 NA 值,city 字段中还包含了一些脏数据。

数据表检查
python 中处理的数据量通常会比较大,所以就需要我们对数据表进行检查。比如我们之前的文章中介绍的纽约出租车数据和 Citibike 的骑行数据,数据量都在千万级,我们无法一目了然的了解数据表的整体情况,必须要通过一些方法来获得数据表的关键信息。数据表检查的另一个目的是了解数据的概况,例如整个数据表的大小,所占空间,数据格式,是否有空值和重复项和具体的数据内容。为后面的清洗和预处理做好准备。
数据维度(行列)

Excel 中可以通过 CTRL 向下的光标键,和 CTRL 向右的光标键来查看行号和列号。Python 中使用 shape 函数来查看数据表的维度,也就是行数和列数,函数返回的结果(6,6)表示数据表有 6 行,6 列。下面是具体的代码。

1 #查看数据表的维度

2 df.shape

3 (6, 6)

数据表信息

使用 info 函数查看数据表的整体信息,这里返回的信息比较多,包括数据维度,列名称,数据格式和所占空间等信息。

1 #数据表信息

2 df.info()

4 <class ‘pandas.core.frame.DataFrame’>

5 RangeIndex: 6 entries, 0 to 5

6 Data columns (total 6 columns):

7 id 6 non-null int64

8 date 6 non-null datetime64[ns]

9 city 6 non-null object

10 category 6 non-null object

11 age 6 non-null int64

12 price 4 non-null float64

13 dtypes: datetime64ns, float64(1), int64(2), object(2)

14 memory usage: 368.0 bytes

查看数据格式

Excel 中通过选中单元格并查看开始菜单中的数值类型来判断数据的格式。Python 中使用 dtypes 函数来返回数据格式。

Dtypes 是一个查看数据格式的函数,可以一次性查看数据表中所有数据的格式,也可以指定一列来单独查看。
1#查看数据表各列格式
2df.dtypes
3

4id int64

5date datetime64[ns]

6city object

7category object

8age int64

9price float64

10dtype: object

11

12#查看单列格式

13df[‘B’].dtype

14

15dtype(‘int64’)

查看空值

Excel 中查看空值的方法是使用“定位条件”功能对数据表中的空值进行定位。“定位条件”在“开始”目录下的“查找和选择”目录中。

Isnull 是 Python 中检验空值的函数,返回的结果是逻辑值,包含空值返回 True,不包含则返回 False。可以对整个数据表进行检查,也可以单独对某一列进行空值检查。

df_isnull

1#检查特定列空值

2df[‘price’].isnull()

3

40 False

51 True
62 False
73 False

84 True

95 False

10Name: price, dtype: bool

查看唯一值

Excel 中查看唯一值的方法是使用“条件格式”对唯一值进行颜色标记。Python 中使用 unique 函数查看唯一值。

Unique 是查看唯一值的函数,只能对数据表中的特定列进行检查。下面是代码,返回的结果是该列中的唯一值。类似与 Excel 中删除重复项后的结果。

1 #查看 city 列中的唯一值

2 df[‘city’].unique()34array(['Beijing ', ‘SH’, ’ guangzhou ', ‘Shenzhen’, ‘shanghai’, 'BEIJING '], dtype=object)

查看数据表数值

Python 中的 Values 函数用来查看数据表中的数值。以数组的形式返回,不包含表头信息。

1#查看数据表的值

2df.values

3
4array([[1001, Timestamp(‘2013-01-02 00:00:00’), 'Beijing ', ‘100-A’, 23,
5 1200.0],

6 [1002, Timestamp(‘2013-01-03 00:00:00’), ‘SH’, ‘100-B’, 44, nan],

7 [1003, Timestamp(‘2013-01-04 00:00:00’), ’ guangzhou ', ‘110-A’, 54,

8 2133.0],

9 [1004, Timestamp(‘2013-01-05 00:00:00’), ‘Shenzhen’, ‘110-C’, 32,

10 5433.0],

11 [1005, Timestamp(‘2013-01-06 00:00:00’), ‘shanghai’, ‘210-A’, 34,
12 nan],

13 [1006, Timestamp(‘2013-01-07 00:00:00’), 'BEIJING ', ‘130-F’, 32,

14 4432.0]], dtype=object)

查看列名称

Colums 函数用来单独查看数据表中的列名称。

1 #查看列名称

2 df.columns

3

4 Index([‘id’, ‘date’, ‘city’, ‘category’, ‘age’, ‘price’], dtype=‘object’)

查看前 10 行数据

Head 函数用来查看数据表中的前 N 行数据,默认 head()显示前 10 行数据,可以自己设置参数值来确定查看的行数。下面的代码中设置查看前 3 行的数据。

1#查看前 3 行数据``df.head(``3``)

Tail 行数与 head 函数相反,用来查看数据表中后 N 行的数据,默认 tail()显示后 10 行数据,可以自己设置参数值来确定查看的行数。下面的代码中设置查看后 3 行的数据。

1#查看最后 3 行df.tail(3)

阅读全文

与python提取网页表格数据库相关的资料

热点内容
wifi和数据哪个好 浏览:695
哪里适合孩子学习编程 浏览:773
miui8桌面文件夹 浏览:18
哪些文件值得收藏 浏览:549
linux查看几兆网卡 浏览:386
iphone4清理后台 浏览:599
new文件怎么改为pdf 浏览:930
刻录文件用什么打印机 浏览:888
德国大数据工程师年薪大概多少钱 浏览:870
训练哪个app好 浏览:821
90版本新男魔法师刷图加点2015 浏览:881
如何进行数据差异性比较 浏览:68
微信聊天记录默认存在哪个文件夹 浏览:252
张孝祥java邮件开发详解 浏览:431
财政保障水平分析取哪个数据 浏览:391
linux下增加路由命令 浏览:419
iphone冲刷固件 浏览:604
网络机房平面图 浏览:579
笔记本电脑卡慢怎么处理win10 浏览:77
编程仿真用什么软件 浏览:424

友情链接