导航:首页 > 编程大全 > python界面工具

python界面工具

发布时间:2023-04-28 08:31:35

Ⅰ Python 中的可视化工具介绍

几周前,R语言社区经历了一场关于画图工具的讨论。对于我们这种外人来说,具体的细节并不重要,但是我们可以将一些有用的观点运用到 Python 中。讨论的重点是 R 语言自带的绘图工具 base R 和 Hadley Wickham 开发的绘图工具 ggplot2 之间的优劣情况。如果你想了解更多细节内容,请阅读以下几篇文备轮章:

其中最重要的两个内容是:

不是所有人都认同第二个观点,ggplot2确实无法绘制出所有的图表类型,但是我会利用它来做分析。

以下是 2016 年 4 月写的关于绘图工具的概述。出于多方面的原因,绘图工具的选取更多地取决于个人偏好,因此本文介绍的 Python 绘图工具也仅代表我的个人使用偏好。

Matplotlib 是一个强大的工具,它是 Pandas' builtin-plotting Seaborn 的基础。 Matplotlib 能够绘制许多不同的图形,还能调用多个级别的许多 API 。我发现 pyplot api 非常好用,你可能用不上 Transforms 或者 artists ,但是如果你有需求的话可以查阅帮助文档。我将从 pandas seaborn 图开始介绍,然后介绍如何调用 pyplot API

DataFrame Series 拥有 .plot 的命名空间,其中有许多图形裤滚森类别可供选择(line, hist, scatter, 等等)。 Pandas 对胡亩象还提供了额外的用于增强图形展现效果的数据,如索引变量。
由于 pandas 具有更少的向后兼容的限制,所以它具有更好的美学特性。从这方面来说,我认为 pandas 中的 DataFrame.plot 是一个非常实用的快速探索性分析的工具。

Michael Waskom 所开发的 Seaborn 提供了一个高层次的界面来绘制更吸引人统计图形。 Seaborn 提供了一个可以快速探索分析数据不同特征的 API 接口,接下来我们将重点介绍它。

Bokeh 是一款针对浏览器开发的可视化工具。
matplotlib 一样,**Bokeh
** 拥有一系列 API 接口。比如 glpyhs 接口,该接口和 matplotllib 中的 Artists 接口非常相似,它主要用于绘制环形图、方形图和多边形图等。最近 Bokeh 又开放了一个新的图形接口,该接口主要用于处理词典数据或 DataFrame 数据,并用于绘制罐头图。

以下是一些本文没有提到的可视化工具:

我们将利用 ggplot2 中的 diamonds 数据集,你可以在 Vincent Arelbundock's RDatasets 中找到它(pd.read_csv(' http://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv') ),此外我们还需要检测是否已经安装 feather

[站外图片上传中……(4)]

Bokeh 提供了两个 API,一个是低级的 glyph API,另一个是高级的 Charts API。

[站外图片上传中……(5)]

还不是很清楚我们应该在啥时候利用 Bokeh 来进行探索性分析,不过它的交互式功能可以激发我的兴趣。就个人而言,由于习惯问题我平时仍然一直使用 matplotlib 来绘图,我还无法完全切换到 Bokeh 中。

我非常喜欢 Bokeh 的仪表盘功能和 bokeh server 的 webapps。

[站外图片上传中……(6)]

[站外图片上传中……(7)]

[站外图片上传中……(8)]

matplotlib 并不局限于处理 DataFrame 数据,它支持所有使用 getitem 作为键值的数据类型。

[站外图片上传中……(9)]

[站外图片上传中……(10)]

我们从列变量的名字中提取出轴标签,利用 Pandas 可以更加便捷地绘制一系列共享 x 轴数据的图形。

[站外图片上传中……(11)]

[站外图片上传中……(12)]

本文中的剩余部分将重点介绍 seaborn和为什么我认为它是探索性分析的强大工具。

我强烈建议你阅读 Seaborn 的 introctory notes,这上面介绍了 seaborn 的设计逻辑和应用领域。

我们可以通过一个稳定的且易懂的 API 接口来调用 Seaborn。

事实上,seaborn 是基于 matplotlib 开发的,这意味着如果你熟悉 pyplot API的话,那么你可以很容易地掌握 seaborn。

大多数 seaborn 绘图函数的参数都由 x, y, hue, 和 data 构成(并不是所有的参数都是必须的)。如果你处理的对象是 DataFrame,那么你可以直接将列变量的名称和数据集的名称一同传递到绘图函数中。

[站外图片上传中……(13)]

[站外图片上传中……(14)]

[站外图片上传中……(15)]

[站外图片上传中……(16)]

我们可以很轻易地探究两个变量之间的关系:

[站外图片上传中……(17)]

[站外图片上传中……(18)]

或者一次探究多个变量之间的关系:

[站外图片上传中……(19)]

[站外图片上传中……(20)]

pariplot 是 PairGrid 的一个包装函数,它提供了 seaborn 一个重要的抽象功能——Grid。Seaborn 的 Grid 将 matplotlib 中Figure 和数据集中的变量联系起来了。

我们有两种方式可以和 grids 进行交互操作。其一,seaborn 提供了类似于 pairplot 的包装函数,它提前设置了许多常见任务的参数;其二,如果你需要更多的自定义选项,那么你可以直接利用 Grid 方法。

[站外图片上传中……(21)]
[站外图片上传中……(22)]

[站外图片上传中……(23)]
34312 rows × 7 columns

[站外图片上传中……(24)]
[站外图片上传中……(25)]

FaceGrid 可以通过控制分面变量来生成 Grid图形,其中PairGrid是它的一个特例。接下来的案例中,我们将以数据集中的 cut 变量为分面变量来绘制图像:
[站外图片上传中……(26)]

[站外图片上传中……(27)]
最后一个案例展示了如何将 seaborn 和 matplotlib 结合起来。g.axes是matplotlib.Axes的一个数组,g.fig是matplotlib.Figure的一个特例。这是使用 seaborn 时常见的一个模式:利用 seaborn 的方法来绘制图像,然后再利用 matplotlib 来调整细节部分。

我认为 seaborn 之所以吸引人是因为它的绘图语法具有很强的灵活性。你不会被作者所设定的图表类型所局限住,你可以根据自己的需要创建新的图表。
[站外图片上传中……(28)]

[站外图片上传中……(29)]

[站外图片上传中……(30)]

[站外图片上传中……(31)]

本来,我打算准备更多的例子来介绍 seaborn,但是我会将相关链接分享给大家。Seaborn 的说明文档写的非常详细。

最后,我们将结合 scikit-learn 来介绍如何利用 GridSearch 来寻找最佳参数。
[站外图片上传中……(32)]

[站外图片上传中……(33)]

[站外图片上传中……(34)]

原文链接: http://tomaugspurger.github.io/modern-6-visualization.html

译者:Fibears

Ⅱ 八款常用的 Python GUI 开发框架推荐

作为Python开发者,你迟早都会用到图形用户界面来开发应用。本文将推荐一些 Python GUI 框架,希望对大家有所帮助。

Python 的 UI 开发工具包 Kivy

https://www.oschina.net/p/kivy

Kivy是一个开源工具包能够让使用相同源代码创建的程序能跨平台运行。它主要关注创新型用户界面开发,如:多点触摸应用程序。Kivy还提供一个多点触摸鼠标模拟器。当前支持的平台包括:Linux、Windows、Mac OS X和Android。

Kivy拥有能够处理动画、缓存、手势、绘图等功能。它还内置许多用户界面控件如:按纽、摄影机、表格、Slider和树形控件等。

Python 的 GUI 开发工具 Flexx

https://www.oschina.net/p/flexx

Flexx 是一个纯 Python 工具包,用来创建图形化界面应用程序。其使用 Web 技术进行界面的渲染。你可以用 Flexx 来创建桌面应用,同时也可以导出一个应用到独立的 HTML 文档。因为使用纯 Python 开发,所以 Flexx 是跨平台的。只需要有 Python 和浏览器就可以运行。如果是使用桌面模式运行,推荐使用 Firefox 。

Qt 库的 Python 绑定 PyQt

https://www.oschina.net/p/pyqt

PyQt是Qt库的Python版本。PyQt3支持Qt1到Qt3。 PyQt4支持Qt4。它的首次发布也是在1998年,但是当时它叫 PyKDE,因为开始的时候SIP和PyQt没有分开。PyQt是用SIP写的。PyQt 提供 GPL版和商业版。

Python图形开发包 wxPython

https://www.oschina.net/p/wxpython

wxPython 是 Python 语言的一套优秀的 GUI 图形库,允许 Python 程序员很方便的创建完整的、功能键全的 GUI 用户界面。 wxPython 是作为优秀的跨平台 GUI 库 wxWidgets 的 Python 封装和 Python 模块的方式提供给用户的。

就如同Python和wxWidgets一样,wxPython也是一款开源软件,并且具有非常优秀的跨平台能力,能够运行在32位windows、绝大多数的Unix或类Unix系统、Macintosh OS X上。

Tk 图形用户界面 Tkinter

https://www.oschina.net/p/tkinter

Tkinter(也叫Tk接口)是Tk图形用户界面工具包标准的Python接口。Tk是一个轻量级的跨平台图形用户界面(GUI)开发工具。Tk和Tkinter可以运行在大多数的Unix平台、Windows、和Macintosh系统。

Tkinter 由一定数量的模块组成。Tkinter位于一个名为_tkinter(较早的版本名为tkinter)的二进制模块中 。Tkinter包含了对Tk的低 级接口模块,低级接口并不会被应用级程序员直接使用,通常是一个共享库(或DLL),但是在一些情况下它也被Python解释器静态链接。

Pywin32

https://www.oschina.net/p/pywin32

Windows Pywin32允许你像VC一样的形式来使用PYTHON开发win32应用。代码风格可以类似win32 sdk,也可以类似MFC,由你选择。如果你仍不放弃vc一样的代码过程在python下,那么这就是一个不错的选择。

Python 图形界面开发包 PyGTK

https://www.oschina.net/p/pygtk

PyGTK让你用Python轻松创建具有图形用户界面的程序.底层的GTK+提供了各式的可视元素和功能,如果需要,你能开发在GNOME桌面系统运行的功能完整的软件.

PyGTK真正具有跨平台性,它能不加修改地,稳定运行各种操作系统之上,如Linux,Windows,MacOS等.除了简单易用和快速的原型开发能力外,PyGTK还有一流的处理本地化语言的独特功能.

用python快速开发绚丽桌面程序 pyui4win

https://www.oschina.net/p/py-ui4win

pyui4win是一个开源的采用自绘技术的界面库。支持C++和python。用它可以很容易实现QQ和360安全卫士这样的绚丽界面。而且,pyui4win有所见即所得界面设计器,让C++开发人员和python开发人员直接用设计工具设计界面,而不用关心界面如何生成和运行,可以显著缩短界面开发时间。在pyui4win中,界面甚至可以完全交给美工去处理,开发人员可以只负责处理业务逻辑,把开发人员彻底从繁杂的界面处理中解放出来。

以上就是为大家分享的八款常用的python GUI开发框架推荐,希望能对你有帮助。更多python学习资料,可以关注“武汉千锋”微信公众号。

Ⅲ Python编程5种常用工具是什么

【导语】Python是一种开源的编程语言,可用于Web编程、数据科学、人工智能以及许多科学应用,学习Python可以让程序员专注于解决问题,而不是语法,由于Python拥有各式各样的工具,因此更具优势,在进行Python编程学习的时候,了解使用工具和编程基础是主要的,那么Python编程5种常用工具是什么?一起来了解一下吧。

1、IDLE

在安装Python时,默认也会安装IDLE。这是最优秀的Python工具之一。它可以降低Python入门的门槛。它的主要功能包括Python
Shell窗口(交互式解释器)、自动补齐、高亮显示语法以及基本的集成调试器。IDLE轻巧易用,方便学习。但是,它不适用于大型项目。许多程序员都将其作为最佳的Python工具。

2、Scikit-learn

Scikit-learn是数据科学最常使用的Python工具之一。这是一款为机器学习和数据科学而设计的Python工具。该工具主要用于处理分类、回归、聚类、模型选择以及预处理等任务。scikit-Learn最出色的功能是在测试数据集上执行基准测试时,表现出的惊人速度。因此,对于程序员和学生来说,Scikit-learn是最优秀的Python工具之一。

3、Theano

Theano是一款数据科学的Python工具,对于程序员和学生而言,这是一款非常可靠的工具。它是深度学习方面最好的Python工具,因此非常适合深度学习。Theano的设计主旨是用户友好、模块化、易于扩展,而且可以与Python配合使用。它能够以最佳方式表达神经网络。Theano可以在TensorFlow和CNTK等流行的神经网络之上运行。

4、Selenium

Selenium是最佳的Python自动化工具之一。它适用于Python测试的自动化,常常用作Web应用程序的自动化框架。我们可以利用Selenium,通过许多编程语言(包括Java、C#、Python、ruby以及其他许多程序员和学生使用的语言)来编写测试脚本。你还可以在Selenium中集成Junit和TestNG等工具,来管理测试用例并生成报告。

5、Test complete

Testcomplete是另一款非常出色的Python自动化工具。支持Web、移动和桌面自动化测试。更高级的应用需要获得商业许可,而且它还可以帮助学生提高学业成绩。Test
complete还可以像机器人框架一样执行关键字驱动的测试。它拥有最出色的录制以及回放功能,非常实用。

关于Python编程常用工具,就给大家介绍到这里了,以上的五种工具希望大家能够好好利用,工具的使用必然能够更好的简化程序编写,所以还是希望大家能够不断进行技能提升,加油!

Ⅳ python如何做界面

PyQt,一个基于Qt的Python接口包,可以直接使用Qt的控件薯轿茄,还可以使用QSS进行界面美化,下面我简单介绍一下这个包的安装和使用,实验环境Win7+Python3.6+PyCharm5.0,主要内容如下:

1.首先数察,安装PyQt,这个直接在cmd窗口输入命令“pip install pyqt5”就行,如下,由于安装包比较大,所以需要等待一会儿:

Ⅳ 有哪些值得推荐的 Python 开发工具

常用的GUI开发工具有gtkmm,Glade,Qt Creator。

gtkmm 是官方的GTK+的C++接口,GTK+是当前最流行的图形界面开发库之一。使用gtkmm,你不但可以从代码还可以用Glade来创建用户界面。不过需要libglademm的配合。gtkmm是自由软件,遵循LGPL(GNU Library General Public License)。

Glade 是 GTK+ 图形用户界面产生器 。也就是说,Glade 是个 Visual Programming Tool,和 Microsoft Windows 平台的 Visual Tools 类似,只要用鼠标拉一拉,它就会自动帮你产生 C source code。所以我们这些懒人,就不用再去为画面的设计烦恼,用 Glade 设计好画面,再用编辑器把程式码稍为修减就 OK 了。(现在也有各种语言如 C++、Ada95、Python、Perl 等的 GTK+ 介慧昌并面,如果搭配其它工具,也可以自动产生 C++, Ada95, Python and Perl 的程式码) 。

Qt Creator是跨平台的 Qt IDE, Qt Creator 是 Qt 被 Nokia 收购后推出的一款新的轻量级集成开发环境(IDE)。此 IDE 能够跨平台运行,支持的系统包括 Linux(32 位及 64 位)、Mac OS X 以及 Windows。根据官方描述,Qt Creator 的迅态设计目标是使开发人员能够利用 Qt 这个应用程序框架更加快速及轻易的完成开发任务。

GUI是指图形用户界面是指采用图形方式显示的计算机操作用户界面。与早期计算机使用的命令行界前迹面相比,图形界面对于用户来说在视觉上更易于接受。然而这界面若要通过在显示屏的特定位置,以”各种美观而不单调的视觉消息“提示用户”状态的改变“,势必得比简单的消息呈现花上更多的计算能力。

Ⅵ python工具有哪些

1. Pyscripter
Pyscriptor是一个开源的Python集成开发环境,很富有竞争力,同样有诸如代码自动完成、语法检查、视图分割文件编辑等功能。
2. Wing
Wing是一个Python语言的超强IDE,适合做交互式的Python开发.Wing IDE同样支持自动代码完成、代码错误检查、开发技巧提示等,而且Wing IDE也支持多种操作系统,包括Windows、Linux和Mac OS X。
3. Emacs
Emacs是一个可扩展的文本编辑器,同样支持Python开发.Emacs本身以Lisp解释器作为其核心,而且包含了大量的扩展。
4. Pycharm
Pycharm是一个跨平台的Python开发工具,是JetBrains公司的产品.其特征包括:自动代码完成、集成的Python调试器、括号自动匹配、代码折叠.Pycharm支持Windows、MacOS以及Linux等系统,而且可以远程开发、调试、运行程序。

5. Sublime Text
SublimeText也是适合Python开发的IDE工具,SublimeText虽然仅仅是一个编辑器,但是它有丰富的插件,使得对Python开发的支持非常到位。
6. Vim
Vim是一个简洁、高效的工具,也适合做Python开发。
7. Komodo Edit
Komodo Edit是一个免费的、开源的、专业的Python IDE,其特征是非菜单的操作方式,开发高效。
8. Eclipse with PyDev
Eclipse+PyDev插件,很适合开发Python Web应用,其特征包括自动代码完成、语法高亮、代码分析、调试器、以及内置的交互浏览器。

Ⅶ 大神可以给我介绍一下Python IDLE怎么用吗

先简单介绍一下:

Python IDLE是 python自带的一款简洁的集成开发环境,当安装好python之后,python 菜单组就有一项,可以用来启动 IDLE:

Ⅷ python-pyQt5: 界面布局,实现可视化图片、视频处理工具

PGVA,我自己取升谈誉名的小工具,用来处理图片合成、视频截取等小功能,方便处理图片和视频。
主要界面的布局排版和布局

该软件有5块部分组成, 左边的每个按钮点开是单独的一个个QWidget窗体,右边是一个堆叠布局。点击左边的功能按钮,切换右边的堆叠布局。

布局图:

左边下方有个垂直布局,这个是用来占位,为了让按钮局上方。

该功能是处理多张图片合成gif动图

合成输出和图片合成 这个区域处理起来有点麻烦,

这里是表单布局,两行,第吵段二行的标题部分是空串;下方的”图片合成“区域用一样的处理方侍隐式。控件先存到表单布局中,然后再依次放入垂直布局中。

其他功能区域的布局图设计差不多的。

left_place和right_place 这两块是用来占位,为了把操作区域居中。

我给主窗体加了个状态栏,点击状态栏上的图标打开窗口

界面总体的样式

Ⅸ python有哪些开发工具

想要学大闭会python,不仅要学习相关巧仿旦的基础知识和教程,对python各种工具的熟悉使用才能让你在工作中迅速成长!有很多优秀的开发者前辈,为我们提供了好用的python工具,来帮我们更方便的实现开发想法,下面就给大家分享5个好用的python开发工具!

工具一:Anaconda

这个工具就是用来解决Python 开发过程中遇到各种包管理和版本的问题,为了解决很多 Windows 平台的安装包无法正常使用,必须要有Anoconda,它包含了一个包管理工具、一个Python管理环境和常用数据科学包,是数据分析的标配!

工具二:Skulpt

这个工具是用 Javascript 实现在线 Python 执行环境,实现了在浏览器中轻松运行 Python 代码。搭配使用CodeMirror 编辑器就类似于一个基本的在线Python编辑&运行环境。

工具三:Python Tutor

这款工具是由 Philip Guo 开发的免费教育工具,适用于python小白,能够帮助小白解决一些编程学习中的基础障碍,还能帮助小白理解每一行源代码在程序执行时在计算机中的过程。

大部分被教师或学生使用,但也适用于python小白,可以直接在 Web 浏览器中编写 Python 代码,可以把不知道如何在内存中孝扰如何运行的代码,拷贝到Tutor里进行可视化执行,有助于小白对基础的扎实掌握。

工具四:IPython

这款工具是for Humans 的 Python 交互式解释器,功能非常强大,能够支持变量自动补全,自动缩进,支持 bash shell 命令,内置了许多实用功能和函数,同时它也是科学计算和交互可视化的最佳平台。

它还具有以下特性:

·更强的交互 shell(基于 Qt 的终端);

·一个基于浏览器的记事本,支持代码,纯文本,数学公式,内置图表和其他富媒体;

·支持交互数据可视化和图形界面工具;

·灵活,可嵌入解释器加载到任意一个自有工程里;

·简单易用,用于并行计算的高性能工具。

工具五:Jupyter Notebook

看名字就知道Notebook,这款工具就像一个草稿本,能储存文本注释、数学方程、代码和可视化内容等,然后以 Web 的方式呈现。有数据分析、机器学习需求同学的必备工具。

python学习网,大量的免费python视频教程,欢迎在线学习!

Ⅹ 有哪些值得推荐的 Python 开发工具

前提:用来做数据处理和相关的系统开发
刚学python时,面对简陋的官方版idle和一大堆开发平台和发行版,不知道究竟如何下手。在进行多方尝试后,我最后的选择是Anaconda + Pycharm,用anaconda集成的ipython做工作台,做一些分析和小段程序调试的工作,用Pycharm写相应脚本和程序包的开发。这两个工具都是跨平台的,也都有免费版本。
具体来说Anaconda集成了几乎所有我需要的包库,包含了我整个工作流程,做数据分析的pandas\scipy\numpy、绘图的matplotlib、读写Excel文档的xlrd/xlwt,链接SQL数据库的SQLalchemy、机器学习框架sklearn等。对于Anaconda集成的两个工作平台,Spyder——一个类似于Matlab和Rstudio的IDE,是专注于面向数据的分析的,因为其特点也主要是数据区的存在,可以即时知道变量值的变化;Ipython——一个基于cell的shell界面,可以理解为python自带shell的增强版,它将程序分成一块一块的cell,每个cell可以包含多条语句,可以单独调试运行,并将结果保存在内存中,cell之间可以相互调用,并保持一定的相互独立。
可以说有了anaconda自带的这两个工具,足够做数据处理相关的工作了(本身anaconda就是一个为了数据科学而诞生的发行版),但如果涉及到脚本程序和包的开发,感觉spyder还是有点弱,在试过IDE,代码编辑器(比如visual code、sublime等)+插件,这两种方案后,我最后选择了集成度更高的成熟IDE——Pycharm替换spyder作为主要的开发平台,看我头像也可以知道我是一个喷气大脑的死忠,他们家的IDE真的很好用~理由如下:
1、首先作为学生,可以通过e邮箱申请到Jetbrains全家桶,即便无法获取授权,pycharm的community版本免费并且功能足够
2、对于pycharm,可以方便快捷地切换python不同版本的解释器,甚至可以安装相同版本的python解释器配置不同的开发环境,这可以解决有些包之间冲突的情况,也可以针对有些框架按需装包;并且pycharm内置包管理,可以免去pip或者conda方式管理包。
3、pycharm这个IDE的颜色方案、拼写补全、函数联想、函数跳转源代码、断点调试及debug等功能都让我用的十分顺手。
总之我现在的工作流程就是,先用对我需要的功能进行设计,而后在ipython界面下设计调试每个功能模块,调试成功后放到pycharm中组合起来,写成脚本文件,最后用pycharm做调试形成成品。

阅读全文

与python界面工具相关的资料

热点内容
什么app可以录制屏幕 浏览:848
英雄联盟保存回放在哪个文件夹 浏览:693
微信卖盗版 浏览:190
编程适合什么人群学习 浏览:479
安卓使数据库中的一列相加 浏览:184
ppt声音文件在哪里 浏览:325
vs2010折叠代码快捷键 浏览:531
flyme系统升级关闭 浏览:628
米家app电视如何添加 浏览:353
程序员死后网站怎么处理 浏览:667
数控编程方向怎么写 浏览:591
win10怎么找到写字板 浏览:756
阴阳师安卓独立版本 浏览:395
无法复制u盘内的文件错误 浏览:737
u盘装系统不是iso文件 浏览:181
vivoy18l刷安卓44 浏览:853
wifi和数据哪个好 浏览:695
哪里适合孩子学习编程 浏览:773
miui8桌面文件夹 浏览:18
哪些文件值得收藏 浏览:549

友情链接