1. 神经网络——BP算法
对于初学者来说,了解了一个算法的重要意义,往往会引起他对算法本身的重视。BP(Back Propagation,后向传播)算法,具有非凡的历史意义和重大的现实意义。
1969年,作为人工神经网络创始人的明斯基(Marrin M insky)和佩珀特(Seymour Papert)合作出版了《感知器》一书,论证了简单的线性感知器功能有限,不能解决如“异或”(XOR )这样的基本问题,而且对多层网络也持悲观态度。这些论点给神经网络研究以沉重的打击,很多科学家纷纷离开这一领域,神经网络的研究走向长达10年的低潮时期。[1]
1974年哈佛大学的Paul Werbos发明BP算法时,正值神经外网络低潮期,并未受到应有的重视。[2]
1983年,加州理工学院的物理学家John Hopfield利用神经网络,在旅行商这个NP完全问题的求解上获得当时最好成绩,引起了轰动[2]。然而,Hopfield的研究成果仍未能指出明斯基等人论点的错误所在,要推动神经网络研究的全面开展必须直接解除对感知器——多层网络算法的疑虑。[1]
真正打破明斯基冰封魔咒的是,David Rumelhart等学者出版的《平行分布处理:认知的微观结构探索》一书。书中完整地提出了BP算法,系统地解决了多层网络中隐单元连接权的学习问题,并在数学上给出了完整的推导。这是神经网络发展史上的里程碑,BP算法迅速走红,掀起了神经网络的第二次高潮。[1,2]
因此,BP算法的历史意义:明确地否定了明斯基等人的错误观点,对神经网络第二次高潮具有决定性意义。
这一点是说BP算法在神经网络领域中的地位和意义。
BP算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多是在使用BP算法进行训练[2],包括最近炙手可热的深度学习概念下的卷积神经网络(CNNs)。
BP神经网络是这样一种神经网络模型,它是由一个输入层、一个输出层和一个或多个隐层构成,它的激活函数采用sigmoid函数,采用BP算法训练的多层前馈神经网络。
BP算法全称叫作误差反向传播(error Back Propagation,或者也叫作误差逆传播)算法。其算法基本思想为:在2.1所述的前馈网络中,输入信号经输入层输入,通过隐层计算由输出层输出,输出值与标记值比较,若有误差,将误差反向由输出层向输入层传播,在这个过程中,利用梯度下降算法对神经元权值进行调整。
BP算法中核心的数学工具就是微积分的 链式求导法则 。
BP算法的缺点,首当其冲就是局部极小值问题。
BP算法本质上是梯度下降,而它所要优化的目标函数又非常复杂,这使得BP算法效率低下。
[1]、《BP算法的哲学思考》,成素梅、郝中华著
[2]、《机器学习》,周志华著
[3]、 Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现
2016-05-13 第一次发布
2016-06-04 较大幅度修改,完善推导过程,修改文章名
2016-07-23 修改了公式推导中的一个错误,修改了一个表述错误
2. 神经网络算法
20 世纪五、六⼗年代,科学家 Frank Rosenblatt其受到 Warren McCulloch 和 Walter Pitts早期的⼯作的影响,发明了感知机(Perceptrons)。
⼀个感知器接受⼏个⼆进制输⼊, ,并产⽣⼀个⼆进制输出:
如上图所示的感知机有三个输⼊: 。通常可以有更多或更少输⼊。 我们再引⼊权重: ,衡量输入对输出的重要性。感知机的输出为0 或者 1,则由分配权重后的总和 ⼩于等于或者⼤于阈值决定。和权重⼀样,阈值(threshold)是⼀个实数,⼀个神经元的参数。⽤更精确的代数形式如下:
给三个因素设置权重来作出决定:
可以把这三个因素对应地⽤⼆进制变量 来表⽰。例如,如果天⽓好,我们把
,如果不好, 。类似地,如果你的朋友陪你去, ,否则 。 也类似。
这三个对于可能对你来说,“电影好不好看”对你来说最重要,而天气显得不是那么的重要。所以你会这样分配权值: ,然后定义阈值threshold=5。
现在,你可以使⽤感知器来给这种决策建⽴数学模型。
例如:
随着权重和阈值的变化,你可以得到不同的决策模型。很明显,感知机不是⼈做出决策使⽤的全部模型。但是这个例⼦说明了⼀个感知机如何能权衡不同的依据来决策。这看上去也可以⼤致解释⼀个感知机⽹络有时确实能够做出一些不错的决定。
现在我们队上面的结构做一点变化,令b=-threshold,即把阈值移到不等号左边,变成偏置, 那么感知器的规则可以重写为:
引⼊偏置只是我们描述感知器的⼀个很⼩的变动,但是我们后⾯会看到它引导更进⼀步的符号简化。因此,我们不再⽤阈值,⽽总是使⽤偏置。
感知机是首个可以学习的人工神经网络,它的出现引起的神经网络的第一层高潮。需要指出的是,感知机只能做简单的线性分类任务,而且Minsky在1969年出版的《Perceptron》书中,证明了感知机对XOR(异或)这样的问题都无法解决。但是感知机的提出,对神经网络的发展是具有重要意义的。
通过上面的感知机的观察我们发现一个问题,每个感知机的输出只有0和1,这就意味着有时我们只是在单个感知机上稍微修改了一点点权值w或者偏置b,就可能造成最终输出完全的反转。也就是说,感知机的输出是一个阶跃函数。如下图所示,在0附近的时候,输出的变化是非常明显的,而在远离0的地方,我们可能调整好久参数也不会发生输出的变化。
这样阶跃的跳变并不是我们想要的,我们需要的是当我们队权值w或者偏置b做出微小的调整后,输出也相应的发生微小的改变芹则禅。这同时也意味值我们的输出不再只是0和1,还可以输出小数。由此我们引入了S型神经元。
S型神经元使用 S 型函数,也叫Sigmoid function函数,我们用它作为激活函数。其表达式如下:
图像如下图所示:
利⽤实际的 σ 函数,我们得到⼀个,就像上⾯说明的,平滑的感知器。 σ 函数的平滑特性,正是关键因素,⽽不是其细部形式盯明。 σ 的平滑意味着权重和偏置的微⼩变化,即 ∆w 和 ∆b,会从神经元产⽣⼀个微⼩的输出变化 ∆output。实际上,微积分告诉我们
∆output 可以很好地近似表⽰为:
上面的式子是⼀个反映权重、偏置变化嫌尘和输出变化的线性函数。这⼀线性使得我们可以通过选择权重和偏置的微⼩变化来达到输出的微⼩变化。所以当 S 型神经元和感知器本质上是相同的,但S型神经元在计算处理如何变化权重和偏置来使输出变化的时候会更加容易。
有了对S型神经元的了解,我们就可以介绍神经网络的基本结构了。具体如下:
在⽹络中最左边的称为输⼊层,其中的神经元称为输⼊神经元。最右边的,即输出层包含有输出神经元,在图中,输出层只有⼀个神经元。中间层,既然这层中的神经元既不是输⼊也不是输出,则被称为隐藏层。
这就是神经网络的基本结构,随着后面的发展神经网络的层数也随之不断增加和复杂。
我们回顾一下神经网络发展的历程。神经网络的发展历史曲折荡漾,既有被人捧上天的时刻,也有摔落在街头无人问津的时段,中间经历了数次大起大落。
从单层神经网络(感知机)开始,到包含一个隐藏层的两层神经网络,再到多层的深度神经网络,一共有三次兴起过程。详见下图。
我们希望有⼀个算法,能让我们找到权重和偏置,以⾄于⽹络的输出 y(x) 能够拟合所有的 训练输⼊ x。为了量化我们如何实现这个⽬标,我们定义⼀个代价函数:
这⾥ w 表⽰所有的⽹络中权重的集合, b 是所有的偏置, n 是训练输⼊数据的个数,
a 是表⽰当输⼊为 x 时输出的向量,求和则是在总的训练输⼊ x 上进⾏的。当然,输出 a 取决于 x, w和 b,但是为了保持符号的简洁性,我没有明确地指出这种依赖关系。符号 ∥v∥ 是指向量 v 的模。我们把 C 称为⼆次代价函数;有时也称被称为均⽅误差或者 MSE。观察⼆次代价函数的形式我们可以看到 C(w, b) 是⾮负的,因为求和公式中的每⼀项都是⾮负的。此外,代价函数 C(w,b)的值相当⼩,即 C(w; b) ≈ 0,精确地说,是当对于所有的训练输⼊ x, y(x) 接近于输出 a 时。因
此如果我们的学习算法能找到合适的权重和偏置,使得 C(w; b) ≈ 0,它就能很好地⼯作。相反,当 C(w; b) 很⼤时就不怎么好了,那意味着对于⼤量地输⼊, y(x) 与输出 a 相差很⼤。因此我们的训练算法的⽬的,是最⼩化权重和偏置的代价函数 C(w; b)。换句话说,我们想要找到⼀系列能让代价尽可能⼩的权重和偏置。我们将采⽤称为梯度下降的算法来达到这个⽬的。
下面我们将代价函数简化为C(v)。它可以是任意的多元实值函数, 。
注意我们⽤ v 代替了 w 和 b 以强调它可能是任意的函数,我们现在先不局限于神经⽹络的环境。
为了使问题更加简单我们先考虑两个变量的情况,想象 C 是⼀个只有两个变量 和 的函数,我们的目的是找到 和 使得C最小。
如上图所示,我们的目的就是找到局部最小值。对于这样的一个问题,一种方法就是通过微积分的方法来解决,我们可以通过计算导数来求解C的极值点。但是对于神经网络来说,我们往往面对的是非常道的权值和偏置,也就是说v的维数不只是两维,有可能是亿万维的。对于一个高维的函数C(v)求导数几乎是不可能的。
在这种情况下,有人提出了一个有趣的算法。想象一下一个小球从山顶滚下山谷的过程, 我们的⽇常经验告诉我们这个球最终会滚到⾕底。我们先暂时忽略相关的物理定理, 对球体的⾁眼观察是为了激发我们的想象⽽不是束缚我们的思维。因此与其陷进物理学⾥凌乱的细节,不如我们就这样问⾃⼰:如果我们扮演⼀天的上帝,能够构造⾃⼰的物理定律,能够⽀配球体可以如何滚动,那么我们将会采取什么样的运动学定律来让球体能够总是滚落到⾕底呢?
为了更精确地描述这个问题,让我们思考⼀下,当我们在 和 ⽅向分别将球体移动⼀个很⼩的量,即 ∆ 和 ∆ 时,球体将会发⽣什么情况。微积分告诉我们 C 将会有如下变化:
也可以用向量表示为
现在我们的问题就转换为不断寻找一个小于0的∆C,使得C+∆C不断变小。
假设我们选取:
这⾥的 η 是个很⼩的正数(称为学习速率),于是
由于 ∥∇C∥2 ≥ 0,这保证了 ∆C ≤ 0,即,如果我们按照上述⽅程的规则去改变 v,那么 C
会⼀直减⼩,不会增加。
所以我们可以通过不断改变v来C的值不断下降,是小球滚到最低点。
总结⼀下,梯度下降算法⼯作的⽅式就是重复计算梯度 ∇C,然后沿着相反的⽅向移动,沿着⼭⾕“滚落”。我们可以想象它像这样:
为了使梯度下降能够正确地运⾏,我们需要选择合适的学习速率η,确保C不断减少,直到找到最小值。
知道了两个变量的函数 C 的梯度下降方法,我们可以很容易的把它推广到多维。我们假设 C 是⼀个有 m 个变量 的多元函数。 ∆C 将会变为:
其中, ∇C为
∆v为:
更新规则为:
在回到神经网络中,w和b的更新规则为:
前面提到神经⽹络如何使⽤梯度下降算法来学习他们⾃⾝的权重和偏置。但是,这⾥还留下了⼀个问题:我们并没有讨论如何计算代价函数的梯度。这里就需要用到一个非常重要的算法:反向传播算法(backpropagation)。
反向传播算法的启示是数学中的链式法则。
四个方程:
输出层误差方程:
当前层误差方程:
误差方程关于偏置的关系:
误差方程关于权值的关系
算法描述:
检视这个算法,你可以看到为何它被称作反向传播。我们从最后⼀层开始向后计算误差向量δ。这看起来有点奇怪,为何要从后⾯开始。但是如果你认真思考反向传播的证明,这种反向移动其实是代价函数是⽹络输出的函数的结果。为了理解代价随前⾯层的权重和偏置变化的规律,我们需要重复作⽤链式法则,反向地获得需要的表达式。
参考链接: http://neuralnetworksanddeeplearning.com/
3. 如何用代码编写一个神经网络异或运算器
配置环境、安装合适的库、下载数据集……有时候学习深度学习的前期工作很让人沮丧,如果只是为了试试现在人人都谈的深度学习,做这些麻烦事似乎很不值当。但好在我们也有一些更简单的方法可以体验深度学习。近日,编程学习平台 Scrimba 联合创始人 Per Harald Borgen 在 Medium 上发文介绍了一种仅用30行 JavaScript 代码就创建出了一个神经网络的教程,而且使用的工具也只有 Node.js、Synaptic.js 和浏览器而已。另外,作者还做了一个交互式 Scrimba 教程,也许能帮你理解其中的复杂概念。
Synaptic.js:http://synaptic.juancazala.com
Node.js:http://nodejs.org
Scrimba 教程:http://scrimba.com/casts/cast-1980
Synaptic.js 让你可以使用 Node.js 和浏览器做深度学习。在这篇文章中,我将介绍如何使用 Synaptic.js 创建和训练神经网络。
//创建网络const { Layer, Network }= window.synaptic;var inputLayer = new Layer(2);var hiddenLayer = new Layer(3);var outputLayer = new Layer(1);
inputLayer.project(hiddenLayer);
hiddenLayer.project(outputLayer);var myNetwork = new Network({
input: inputLayer,
hidden:[hiddenLayer],
output: outputLayer
});//训练网络——学习异或运算var learningRate =.3;for (var i =0; i <20000; i++)
{//0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}//测试网络console.log(myNetwork.activate([0,0]));//[0.0]console.log(myNetwork.activate([0,1]));//[0.]console.log(myNetwork.activate([1,0]));//[0.]console.log(myNetwork.activate([1,1]));//[0.0]
我们将创建一个最简单的神经网络:一个可以执行异或运算的网络。上面就是这个网络的全部代码,但在我们深入解读这些代码之前,首先我们先了解一下神经网络的基础知识。
神经元和突触
神经网络的基本构造模块是神经元。神经元就像是一个函数,有几个输入,然后可以得到一个输出。神经元的种类有很多。我们的网络将使用 sigmoid 神经元,它可以输入任何数字并将其压缩到0 到1 之间。下图就是一个 sigmoid 神经元。它的输入是5,输出是1。箭头被称为突触,可以将该神经元与网络中的其它层连接到一起。
现在训练这个网络:
// train the network - learn XORvar learningRate =.3;for (var i =0; i <20000; i++){ //0,0=>0
myNetwork.activate([0,0]);
myNetwork.propagate(learningRate,[0]);//0,1=>1
myNetwork.activate([0,1]);
myNetwork.propagate(learningRate,[1]);//1,0=>1
myNetwork.activate([1,0]);
myNetwork.propagate(learningRate,[1]);//1,1=>0
myNetwork.activate([1,1]);
myNetwork.propagate(learningRate,[0]);
}
这里我们运行该网络20000次。每一次我们都前向和反向传播4 次,为该网络输入4 组可能的输入:[0,0][0,1][1,0][1,1]。
首先我们执行 myNetwork.activate([0,0]),其中[0,0]是我们发送给该网络的数据点。这是前向传播,也称为激活这个网络。在每次前向传播之后,我们需要执行反向传播,这时候网络会更新自己的权重和偏置。
反向传播是通过这行代码完成的:myNetwork.propagate(learningRate,[0]),其中 learningRate 是一个常数,给出了网络每次应该调整的权重的量。第二个参数0 是给定输入[0,0]对应的正确输出。
然后,该网络将自己的预测与正确的标签进行比较,从而了解自己的正确程度有多少。
然后网络使用这个比较为基础来校正自己的权重和偏置值,这样让自己的下一次猜测更加正确一点。
这个过程如此反复20000次之后,我们可以使用所有四种可能的输入来检查网络的学习情况:
->[0.0]console.log(myNetwork.activate([0,1]));
->[0.]console.log(myNetwork.activate([1,0]));
->[0.]console.log(myNetwork.activate([1,1]));
->[0.0]
如果我们将这些值四舍五入到最近的整数,我们就得到了正确的异或运算结果。
这样就完成了。尽管这仅仅只碰到了神经网络的表皮,但也足以帮助你进一步探索 Synaptic 和继续学习了。http://github.com/cazala/synaptic/wiki 这里还包含了更多好教程。
4. 人工神经网络综述
文章主要分为:
一、人工神经网络的概念;
二、人工神经网络的发展历史;
三、人工神经网络的特点;
四、人工神经网络的结构。
。。
人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。
神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激活函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。
神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。
在介绍神经网络的发展历史之前,首先介绍一下神经网络的概念。神经网络主要是指一种仿造人脑设计的简化的计算模型,这种模型中包含了大量的用于计算的神经元,这些神经元之间会通过一些带有权重的连边以一种层次化的方式组织在一起。每一层的神经元之间可以进行大规模的并行计算,层与层之间进行消息的传递。
下图展示了整个神经网络的发展历程:
神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。
(1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。1943 年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。
(2)、Hebb规则:1949 年,心理学家赫布(Hebb)出版了《The Organization of Behavior》(行为组织学),他在书中提出了突触连接强度可变的假设。这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常著名的Hebb规则。这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。
(3)、感知器模型:1957 年,罗森勃拉特(Rosenblatt)以M-P 模型为基础,提出了感知器(Perceptron)模型。感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。这是一个具有连续可调权值矢量的MP神经网络模型,经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。Rosenblatt 证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。Rosenblatt 的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。
(4)、ADALINE网络模型: 1959年,美国著名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptive linear element,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。
人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线性感知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线性感知器不可能实现“异或”的逻辑关系等。这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。
(1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizing feature map)。后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。
(2)、自适应共振理论ART:1976年,美国Grossberg教授提出了著名的自适应共振理论ART(Adaptive Resonance Theory),其学习过程具有自组织和自稳定的特征。
(1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。1984年,Hopfield 又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。1985 年,Hopfield和Tank利用Hopfield神经网络解决了著名的旅行推销商问题(Travelling Salesman Problem)。Hopfield神经网络是一组非线性微分方程。Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。因为Hopfield 神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。
(2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。
Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann 机模型。
(3)、BP神经网络模型:1986年,儒默哈特(D.E.Ru melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(Error Back-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。
(4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。
(5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。
(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。
(7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。
(8)、1988年,Broomhead和Lowe用径向基函数(Radialbasis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。
(9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。
(10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。
(11)、90年代初,Vapnik等提出了支持向量机(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。
经过多年的发展,已有上百种的神经网络模型被提出。
深度学习(Deep Learning,DL)由Hinton等人于2006年提出,是机器学习的一个新领域。深度学习本质上是构建含有多隐层的机器学习架构模型,通过大规模数据进行训练,得到大量更具代表性的特征信息。深度学习算法打破了传统神经网络对层数的限制,可根据设计者需要选择网络层数。
突触是神经元之间相互连接的接口部分,即一个神经元的神经末梢与另一个神经元的树突相接触的交界面,位于神经元的神经末梢尾端。突触是轴突的终端。
大脑可视作为1000多亿神经元组成的神经网络。神经元的信息传递和处理是一种电化学活动.树突由于电化学作用接受外界的刺激,通过胞体内的活动体现为轴突电位,当轴突电位达到一定的值则形成神经脉冲或动作电位;再通过轴突末梢传递给其它的神经元.从控制论的观点来看;这一过程可以看作一个多输入单输出非线性系统的动态过程。
神经元的功能特性:(1)时空整合功能;(2)神经元的动态极化性;(3)兴奋与抑制状态;(4)结构的可塑性;(5)脉冲与电位信号的转换;(6)突触延期和不应期;(7)学习、遗忘和疲劳。
神经网络从两个方面模拟大脑:
(1)、神经网络获取的知识是从外界环境中学习得来的。
(2)、内部神经元的连接强度,即突触权值,用于储存获取的知识。
神经网络系统由能够处理人类大脑不同部分之间信息传递的由大量神经元连接形成的拓扑结构组成,依赖于这些庞大的神经元数目和它们之间的联系,人类的大脑能够收到输入的信息的刺激由分布式并行处理的神经元相互连接进行非线性映射处理,从而实现复杂的信息处理和推理任务。
对于某个处理单元(神经元)来说,假设来自其他处理单元(神经元)i的信息为Xi,它们与本处理单元的互相作用强度即连接权值为Wi, i=0,1,…,n-1,处理单元的内部阈值为θ。那么本处理单元(神经元)的输入为:
,而处理单元的输出为:
式中,xi为第i个元素的输入,wi为第i个处理单元与本处理单元的互联权重即神经元连接权值。f称为激活函数或作用函数,它决定节点(神经元)的输出。θ表示隐含层神经节点的阈值。
神经网络的主要工作是建立模型和确定权值,一般有前向型和反馈型两种网络结构。通常神经网络的学习和训练需要一组输入数据和输出数据对,选择网络模型和传递、训练函数后,神经网络计算得到输出结果,根据实际输出和期望输出之间的误差进行权值的修正,在网络进行判断的时候就只有输入数据而没有预期的输出结果。神经网络一个相当重要的能力是其网络能通过它的神经元权值和阈值的不断调整从环境中进行学习,直到网络的输出误差达到预期的结果,就认为网络训练结束。
对于这样一种多输入、单输出的基本单元可以进一步从生物化学、电生物学、数学等方面给出描述其功能的模型。利用大量神经元相互连接组成的人工神经网络,将显示出人脑的若干特征,人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重wij值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以至超过设计者原有的知识水平。通常,它的学习(或训练)方式可分为两种,一种是有监督(supervised)或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督(unsupervised)学习或称无导师学习,这时,只规定学习方式或某些规则,而具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似于人脑的功能。
在人工神经网络设计及应用研究中,通常需要考虑三个方面的内容,即神经元激活函数、神经元之间的连接形式和网络的学习(训练)。
5. 神经网络的发展趋势如何
神经网络的云集成模式还不是很成熟,应该有发展潜力,但神经网络有自己的硬伤,不知道能够达到怎样的效果,所以决策支持系统中并不是很热门,但是神经网络无视过程的优点也是无可替代的,云网络如果能够对神经网络提供一个互补的辅助决策以控制误差的话,也许就能使神经网络成熟起来
1 人工神经网络产生的背景
自古以来,关于人类智能本源的奥秘,一直吸引着无数哲学家和自然科学家的研究热情。生物学家、神经学家经过长期不懈的努力,通过对人脑的观察和认识,认为人脑的智能活动离不开脑的物质基础,包括它的实体结构和其中所发生的各种生物、化学、电学作用,并因此建立了神经元网络理论和神经系统结构理论,而神经元理论又是此后虚帆神经传导理论和大脑功能学说的基础。在这些理论基础之上,科学家们认为,可以从仿制人脑神经系统的结构和功能出发,研究人类智能活动和认识现象。另一方面,19世纪之前,无论是以欧氏几何和微积分为代表的经典数学,还是以牛顿力学为代表的经典物理学,从总体上说,这些经典科学都是线性科学。然而,客观世界是如此的纷繁复杂,非线性情况随处可见,人脑神经系统更是如此。复杂性和非线性是连接在一起的,因此,对非线性科学的研究也是我们认识复杂系统的关键。为了更好地认识客观世界,我们必须对非线性科学进行研究。人工神经网络作为一种非线性的、与大脑智能相似的网络模型,就这样应运而生了。所以,人工神经网络的创立不是偶然的,而是20世纪初科学技术充分发展的产物。
2 人工神经网络的发展
人工神经网络的研究始于40年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的远为曲折的道路。
1943年,心理学家W.S.Mcculloch和数理逻辑学家W.Pitts 提出了M—P模型,这是第一个用数理语言描述脑的信息处理过程的模型, 虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949年,心理学家D.O.Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。 1957 年, 计算机科学家Rosenblatt提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络,第一次把神经网络研究付诸工程实现。由于可应用于模式识别,联想记忆等方面,当时有上百家实验室投入此项研究,美国军方甚至认为神经网络工程应当比“原子弹工程”更重要而给予巨额资助,并在声纳信号识别等领域取得一定成绩。1960年,B.Windrow和E.Hoff提出了自适应线性单元, 它可用于自适应滤波、预测和模式识别。至此,人工神经网络的研究工作进入了第一个高潮。
1969年,美国著名人工智能学者M.Minsky和S.Papert编写了影响很大的Perceptron一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知机能力也不过如此,他们的分析恰似一瓢冷水,很多学者感到前途渺茫而纷纷改行,原先参与研究的实验室纷纷退出,在这之后近10年,神经网络研究进入了一个缓慢发展的萧条期。这期间,芬兰学者T.Kohonen 提出了自组织映射理论,反映了大脑神经细胞的自组织特性、记忆方式以及神经细胞兴奋刺激的规律;美国学者S.A.Grossberg的自适应共振理论(ART );日本学者K.Fukushima提判租出了认知机模型;ShunIchimari则致力于神经网络有关数学理论的研究等,这些研究成果对以后的神经网络的发展产生了重要影响。
美国生物物理学家J.J.Hopfield于1982年、1984年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的又一次热潮。 1982 年, 他提出了一个新的神经网络模型——hopfield网络模型。他在这种网络模型的研究中,首次引入了网络能量函数的概念,并给出了网络稳定性的判定依据。1984年,他又提出了网络模型实现的电子电路,为神经网络的工程实现指明了方向,他的研究成果开拓了神经网络用于联想记忆的优化计算的新途径,并为差冲雹神经计算机研究奠定了基础。1984年Hinton等人将模拟退火算法引入到神经网络中,提出了Boltzmann机网络模型,BM 网络算法为神经网络优化计算提供了一个有效的方法。1986年,D.E.Rumelhart和J.LMcclelland提出了误差反向传播算法,成为至今为止影响很大的一种网络学习方法。1987年美国神经计算机专家R.Hecht—Nielsen提出了对向传播神经网络,该网络具有分类灵活,算法简练的优点,可用于模式分类、函数逼近、统计分析和数据压缩等领域。1988年L.Ochua 等人提出了细胞神经网络模型,它在视觉初级加工上得到了广泛应用。
为适应人工神经网络的发展,1987年成立了国际神经网络学会,并决定定期召开国际神经网络学术会议。1988年1月Neural Network 创刊。1990年3月IEEE Transaction on Neural Network问世。 我国于1990年12月在北京召开了首届神经网络学术大会,并决定以后每年召开一次。1991 年在南京成立了中国神经网络学会。 IEEE 与INNS 联合召开的IJCNN92已在北京召开。 这些为神经网络的研究和发展起了推波助澜的作用,人工神经网络步入了稳步发展的时期。
90年代初,诺贝尔奖获得者Edelman提出了Darwinism模型,建立了神经网络系统理论。同年,Aihara等在前人推导和实验的基础上,给出了一个混沌神经元模型,该模型已成为一种经典的混沌神经网络模型,该模型可用于联想记忆。 Wunsch 在90OSA 年会上提出了一种AnnualMeeting,用光电执行ART,学习过程有自适应滤波和推理功能,具有快速和稳定的学习特点。1991年,Hertz探讨了神经计算理论, 对神经网络的计算复杂性分析具有重要意义;Inoue 等提出用耦合的混沌振荡子作为某个神经元,构造混沌神经网络模型,为它的广泛应用前景指明了道路。1992年,Holland用模拟生物进化的方式提出了遗传算法, 用来求解复杂优化问题。1993年方建安等采用遗传算法学习,研究神经网络控制器获得了一些结果。1994年Angeline等在前人进化策略理论的基础上,提出一种进化算法来建立反馈神经网络,成功地应用到模式识别,自动控制等方面;廖晓昕对细胞神经网络建立了新的数学理论和方法,得到了一系列结果。HayashlY根据动物大脑中出现的振荡现象,提出了振荡神经网络。1995年Mitra把人工神经网络与模糊逻辑理论、 生物细胞学说以及概率论相结合提出了模糊神经网络,使得神经网络的研究取得了突破性进展。Jenkins等人研究光学神经网络, 建立了光学二维并行互连与电子学混合的光学神经网络,它能避免网络陷入局部最小值,并最后可达到或接近最理想的解;SoleRV等提出流体神经网络,用来研究昆虫社会,机器人集体免疫系统,启发人们用混沌理论分析社会大系统。1996年,ShuaiJW’等模拟人脑的自发展行为, 在讨论混沌神经网络的基础上提出了自发展神经网络。1997、1998年董聪等创立和完善了广义遗传算法,解决了多层前向网络的最简拓朴构造问题和全局最优逼近问题。
随着理论工作的发展,神经网络的应用研究也取得了突破性进展,涉及面非常广泛,就应用的技术领域而言有计算机视觉,语言的识别、理解与合成,优化计算,智能控制及复杂系统分析,模式识别,神经计算机研制,知识推理专家系统与人工智能。涉及的学科有神经生理学、认识科学、数理科学、心理学、信息科学、计算机科学、微电子学、光学、动力学、生物电子学等。美国、日本等国在神经网络计算机软硬件实现的开发方面也取得了显著的成绩,并逐步形成产品。在美国,神经计算机产业已获得军方的强有力支持,国防部高级研究计划局认为“神经网络是解决机器智能的唯一希望”,仅一项8 年神经计算机计划就投资4亿美元。在欧洲共同体的ESPRIT计划中, 就有一项特别项目:“神经网络在欧洲工业中的应用”,单是生产神经网络专用芯片这一项就投资2200万美元。据美国资料声称,日本在神经网络研究上的投资大约是美国的4倍。我国也不甘落后,自从1990 年批准了南开大学的光学神经计算机等3项课题以来, 国家自然科学基金与国防预研基金也都为神经网络的研究提供资助。另外,许多国际著名公司也纷纷卷入对神经网络的研究,如Intel、IBM、Siemens、HNC。神经计算机产品开始走向商用阶段,被国防、企业和科研部门选用。在举世瞩目的海湾战争中,美国空军采用了神经网络来进行决策与控制。在这种刺激和需求下,人工神经网络定会取得新的突破,迎来又一个高潮。自1958年第一个神经网络诞生以来,其理论与应用成果不胜枚举。人工神经网络是一个快速发展着的一门新兴学科,新的模型、新的理论、新的应用成果正在层出不穷地涌现出来。
3 人工神经网络的发展前景
针对神经网络存在的问题和社会需求,今后发展的主要方向可分为理论研究和应用研究两个方面。
(1)利用神经生理与认识科学研究大脑思维及智能的机理、 计算理论,带着问题研究理论。
人工神经网络提供了一种揭示智能和了解人脑工作方式的合理途径,但是由于人类起初对神经系统了解非常有限,对于自身脑结构及其活动机理的认识还十分肤浅,并且带有某种“先验”。例如, Boltzmann机引入随机扰动来避免局部极小,有其卓越之处,然而缺乏必要的脑生理学基础,毫无疑问,人工神经网络的完善与发展要结合神经科学的研究。而且,神经科学,心理学和认识科学等方面提出的一些重大问题,是向神经网络理论研究提出的新挑战,这些问题的解决有助于完善和发展神经网络理论。因此利用神经生理和认识科学研究大脑思维及智能的机理,如有新的突破,将会改变智能和机器关系的认识。
利用神经科学基础理论的研究成果,用数理方法探索智能水平更高的人工神经网络模型,深入研究网络的算法和性能,如神经计算、进化计算、稳定性、收敛性、计算复杂性、容错性、鲁棒性等,开发新的网络数理理论。由于神经网络的非线性,因此非线性问题的研究是神经网络理论发展的一个最大动力。特别是人们发现,脑中存在着混沌现象以来,用混沌动力学启发神经网络的研究或用神经网络产生混沌成为摆在人们面前的一个新课题,因为从生理本质角度出发是研究神经网络的根本手段。
(2)神经网络软件模拟, 硬件实现的研究以及神经网络在各个科学技术领域应用的研究。
由于人工神经网络可以用传统计算机模拟,也可以用集成电路芯片组成神经计算机,甚至还可以用光学的、生物芯片的方式实现,因此研制纯软件模拟,虚拟模拟和全硬件实现的电子神经网络计算机潜力巨大。如何使神经网络计算机与传统的计算机和人工智能技术相结合也是前沿课题;如何使神经网络计算机的功能向智能化发展,研制与人脑功能相似的智能计算机,如光学神经计算机,分子神经计算机,将具有十分诱人的前景。
4 哲理
(1)人工神经网络打开了认识论的新领域
认识与脑的问题,长期以来一直受到人们的关注,因为它不仅是有关人的心理、意识的心理学问题,也是有关人的思维活动机制的脑科学与思维科学问题,而且直接关系到对物质与意识的哲学基本问题的回答。人工神经网络的发展使我们能够更进一步地既唯物又辩证地理解认识与脑的关系,打开认识论的新领域。人脑是一个复杂的并行系统,它具有“认知、意识、情感”等高级脑功能,用人工进行模拟,有利于加深对思维及智能的认识,已对认知和智力的本质的研究产生了极大的推动作用。在研究大脑的整体功能和复杂性方面,人工神经网络给人们带来了新的启迪。由于人脑中存在混沌现象,混沌可用来理解脑中某些不规则的活动,从而混沌动力学模型能用作人对外部世界建模的工具,可用来描述人脑的信息处理过程。混沌和智能是有关的,神经网络中引入混沌学思想有助于提示人类形象思维等方面的奥秘。人工神经网络之所以再度兴起,关键在于它反映了事物的非线性,抓住了客观世界的本质,而且它在一定程度上正面回答了智能系统如何从环境中自主学习这一最关键的问题,从认知的角度讲,所谓学习,就是对未知现象或规律的发现和归纳。由于神经网络具有高度的并行性,高度的非线性全局作用,良好的容错性与联想记忆功能以及十分强的自适应、自学习功能,而使得它成为揭示智能和了解人脑工作方式的合理途径。但是,由于认知问题的复杂性,目前,我们对于脑神经网的运行和神经细胞的内部处理机制,如信息在人脑是如何传输、存贮、加工的?记忆、联想、判断是如何形成的?大脑是否存在一个操作系统?还没有太多的认识,因此要制造人工神经网络来模仿人脑各方面的功能,还有待于人们对大脑信息处理机理认识的深化。
(2)人工神经网络发展的推动力来源于实践、 理论和问题的相互作用
随着人们社会实践范围的不断扩大,社会实践层次的不断深入,人们所接触到的自然现象也越来越丰富多彩、纷繁复杂,这就促使人们用不同的原因加以解释不同种类的自然现象,当不同种类的自然现象可以用同样的原因加以解释,这样就出现了不同学科的相互交叉、综合,人工神经网络就这样产生了。在开始阶段,由于这些理论化的网络模型比较简单,还存在许多问题,而且这些模型几乎没有得到实践的检验,因而神经网络的发展比较缓慢。随着理论研究的深入,问题逐渐地解决特别是工程上得到实现以后,如声纳识别成功,才迎来了神经网络的第一个发展高潮。可Minisky认为感知器不能解决异或问题, 多层感知器也不过如此,神经网络的研究进入了低谷,这主要是因为非线性问题没得到解决。随着理论的不断丰富,实践的不断深入, 现在已证明Minisky的悲观论调是错误的。今天,高度发达的科学技术逐渐揭示了非线性问题是客观世界的本质。问题、理论、实践的相互作用又迎来了人工神经网络的第二次高潮。目前人工神经网络的问题是智能水平不高,还有其它理论和实现方面的问题,这就迫使人们不断地进行理论研究,不断实践,促使神经网络不断向前发展。总之,先前的原因遇到了解释不同的新现象,促使人们提出更加普遍和精确的原因来解释。理论是基础,实践是动力,但单纯的理论和实践的作用还不能推动人工神经网络的发展,还必须有问题提出,才能吸引科学家进入研究的特定范围,引导科学家从事相关研究,从而逼近科学发现,而后实践又提出新问题,新问题又引发新的思考,促使科学家不断思考,不断完善理论。人工神经网络的发展无不体现着问题、理论和实践的辩证统一关系。
(3 )人工神经网络发展的另一推动力来源于相关学科的贡献及不同学科专家的竞争与协同
人工神经网络本身就是一门边缘学科,它的发展有更广阔的科学背景,亦即是众多科研成果的综合产物,控制论创始人Wiener在其巨著《控制论》中就进行了人脑神经元的研究;计算机科学家Turing就提出过B网络的设想;Prigogine提出非平衡系统的自组织理论,获得诺贝尔奖;Haken研究大量元件联合行动而产生宏观效果, 非线性系统“混沌”态的提出及其研究等,都是研究如何通过元件间的相互作用建立复杂系统,类似于生物系统的自组织行为。脑科学与神经科学的进展迅速反映到人工神经网络的研究中,例如生物神经网络理论,视觉中发现的侧抑制原理,感受野概念等,为神经网络的发展起了重要的推动作用。从已提出的上百种人工神经网络模型中,涉及学科之多,令人目不暇接,其应用领域之广,令人叹为观止。不同学科专家为了在这一领域取得领先水平,存在着不同程度的竞争,所有这些有力地推动了人工神经网络的发展。人脑是一个功能十分强大、结构异常复杂的信息系统,随着信息论、控制论、生命科学,计算机科学的发展,人们越来越惊异于大脑的奇妙,至少到目前为止,人类大脑信号处理机制对人类自身来说,仍是一个黑盒子,要揭示人脑的奥秘需要神经学家、心理学家、计算机科学家、微电子学家、数学家等专家的共同努力,对人类智能行为不断深入研究,为人工神经网络发展提供丰富的理论源泉。另外,还要有哲学家的参与,通过哲学思想和自然科学多种学科的深层结合,逐步孕育出探索人类思维本质和规律的新方法,使思维科学从朦胧走向理性。而且,不同领域专家的竞争与协调同有利于问题清晰化和寻求最好的解决途径。纵观神经网络的发展历史,没有相关学科的贡献,不同学科专家的竞争与协同,神经网络就不会有今天。当然,人工神经网络在各个学科领域应用的研究反过来又推动其它学科的发展,推动自身的完善和发展。
6. 神经网络能实现异或运功能吗
NOT是很容易的。XOR加隐层就能实现。理论上已证明,对于只有一个隐层的感知器网络,只要隐层中的神经元个数足够多,就可以实现对任意函数的逼近。
7. 神经网络的历史是什么
沃伦·麦卡洛克和沃尔特·皮茨(1943)基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算模型。这种模型使得神经网络的研究分裂为两种不同研究思路。一种主要关注大脑中的生物学过程,另一种主要关注神经网络在人工智能里的应用。
一、赫布型学习
二十世纪40年代后期,心理学家唐纳德·赫布根据神经可塑性的机制创造了一种对学习的假说,现在称作赫布型学习。赫布型学习被认为是一种典型的非监督式学习规则,它后来的变种是长期增强作用的早期模型。从1948年开始,研究人员将这种计算模型的思想应用到B型图灵机上。
法利和韦斯利·A·克拉克(1954)首次使用计算机,当时称作计算器,在MIT模拟了一个赫布网络。纳撒尼尔·罗切斯特(1956)等人模拟了一台 IBM 704计算机上的抽象神经网络的行为。
弗兰克·罗森布拉特创造了感知机。这是一种模式识别算法,用简单的加减法实现了两层的计算机学习网络。罗森布拉特也用数学符号描述了基本感知机里没有的回路,例如异或回路。这种回路一直无法被神经网络处理,直到保罗·韦伯斯(1975)创造了反向传播算法。
在马文·明斯基和西摩尔·派普特(1969)发表了一项关于机器学习的研究以后,神经网络的研究停滞不前。他们发现了神经网络的两个关键问题。
第一是基本感知机无法处理异或回路。第二个重要的问题是电脑没有足够的能力来处理大型神经网络所需要的很长的计算时间。直到计算机具有更强的计算能力之前,神经网络的研究进展缓慢。
二、反向传播算法与复兴
后来出现的一个关键的进展是保罗·韦伯斯发明的反向传播算法(Werbos 1975)。这个算法有效地解决了异或的问题,还有更普遍的训练多层神经网络的问题。
在二十世纪80年代中期,分布式并行处理(当时称作联结主义)流行起来。戴维·鲁姆哈特和詹姆斯·麦克里兰德的教材对于联结主义在计算机模拟神经活动中的应用提供了全面的论述。
神经网络传统上被认为是大脑中的神经活动的简化模型,虽然这个模型和大脑的生理结构之间的关联存在争议。人们不清楚人工神经网络能多大程度地反映大脑的功能。
支持向量机和其他更简单的方法(例如线性分类器)在机器学习领域的流行度逐渐超过了神经网络,但是在2000年代后期出现的深度学习重新激发了人们对神经网络的兴趣。
三、2006年之后的进展
人们用CMOS创造了用于生物物理模拟和神经形态计算的计算设备。最新的研究显示了用于大型主成分分析和卷积神经网络的纳米设备具有良好的前景。
如果成功的话,这会创造出一种新的神经计算设备,因为它依赖于学习而不是编程,并且它从根本上就是模拟的而不是数字化的,虽然它的第一个实例可能是数字化的CMOS设备。
在2009到2012年之间,Jürgen Schmidhuber在Swiss AI Lab IDSIA的研究小组研发的循环神经网络和深前馈神经网络赢得了8项关于模式识别和机器学习的国际比赛。
例如,Alex Graves et al.的双向、多维的LSTM赢得了2009年ICDAR的3项关于连笔字识别的比赛,而且之前并不知道关于将要学习的3种语言的信息。
IDSIA的Dan Ciresan和同事根据这个方法编写的基于GPU的实现赢得了多项模式识别的比赛,包括IJCNN 2011交通标志识别比赛等等。
他们的神经网络也是第一个在重要的基准测试中(例如IJCNN 2012交通标志识别和NYU的扬·勒丘恩(Yann LeCun)的MNIST手写数字问题)能达到或超过人类水平的人工模式识别器。
类似1980年Kunihiko Fukushima发明的neocognitron和视觉标准结构(由David H. Hubel和Torsten Wiesel在初级视皮层中发现的那些简单而又复杂的细胞启发)那样有深度的、高度非线性的神经结构可以被多伦多大学杰弗里·辛顿实验室的非监督式学习方法所训练。
2012年,神经网络出现了快速的发展,主要原因在于计算技术的提高,使得很多复杂的运算变得成本低廉。以AlexNet为标志,大量的深度网络开始出现。
2014年出现了残差神经网络,该网络极大解放了神经网络的深度限制,出现了深度学习的概念。
构成
典型的人工神经网络具有以下三个部分:
1、结构(Architecture)结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。
2、激励函数(Activation Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。
3、学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。
例如,用于手写识别的一个神经网络,有一组输入神经元。输入神经元会被输入图像的数据所激发。在激励值被加权并通过一个函数(由网络的设计者确定)后,这些神经元的激励值被传递到其他神经元。
这个过程不断重复,直到输出神经元被激发。最后,输出神经元的激励值决定了识别出来的是哪个字母。
8. 神经网络浅谈
人工智能技术是当前炙手可热的话题,而基于神经网络的深度学习技术更是热点中的热点。去年谷歌的Alpha Go 以4:1大比分的优势战胜韩国的李世石九段,展现了深度学习的强大威力,后续强化版的Alpha Master和无师自通的Alpha Zero更是在表现上完全碾压前者。不论你怎么看,以深度学习为代表的人工智能技术正在塑造未来。
下图为英伟达(NVIDIA)公司近年来的股价情况, 该公司的主要产品是“图形处理器”(GPU),而GPU被证明能大大加快神经网络的训练速度,是深度学习必不可少的计算组件。英伟达公司近年来股价的飞涨足以证明当前深度学习的井喷之势。
好,话不多说,下面简要介绍神经网络的基本原理、发展脉络和优势。
神经网络是一种人类由于受到生物神经细胞结构启发而研究出的一种算法体系,是机器学习算法大类中的一种。首先让我们来看人脑神经元细胞:
一个神经元通常具有多个树突 ,主要用来接受传入信息,而轴突只有一条,轴突尾端有许多轴突末梢,可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。
下图是一个经典的神经网络(Artificial Neural Network,ANN):
乍一看跟传统互联网的拓扑图有点类似,这也是称其为网络的原因,不同的是节点之间通过有向线段连接,并且节点被分成三层。我们称图中的圆圈为神经元,左边三个神经元组成的一列为输入层,中间神经元列为隐藏层,右边神经元列为输出层,神经元之间的箭头为权重。
神经元是计算单元,相当于神经元细胞的细胞核,利用输入的数据进行计算,然后输出,一般由一个线性计算部分和一个非线性计算部分组成;输入层和输出层实现数据的输入输出,相当于细胞的树突和轴突末梢;隐藏层指既不是输入也不是输出的神经元层,一个神经网络可以有很多个隐藏层。
神经网络的关键不是圆圈代表的神经元,而是每条连接线对应的权重。每条连接线对应一个权重,也就是一个参数。权重具体的值需要通过神经网络的训练才能获得。我们实际生活中的学习体现在大脑中就是一系列神经网络回路的建立与强化,多次重复的学习能让回路变得更加粗壮,使得信号的传递速度加快,最后对外表现为“深刻”的记忆。人工神经网络的训练也借鉴于此,如果某种映射关系出现很多次,那么在训练过程中就相应调高其权重。
1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP:
符号化后的模型如下:
Sum函数计算各权重与输入乘积的线性组合,是神经元中的线性计算部分,而sgn是取符号函数,当输入大于0时,输出1,反之输出0,是神经元中的非线性部分。向量化后的公式为z=sgn(w^T a)(w^T=(w_1,w_2,w_3),a=〖(a_1,a_2,a_3)〗^T)。
但是,MP模型中,权重的值都是预先设置的,因此不能学习。该模型虽然简单,并且作用有限,但已经建立了神经网络大厦的地基
1958年,计算科学家Rosenblatt提出了由两层神经元组成(一个输入层,一个输出层)的神经网络。他给它起了一个名字–“感知器”(Perceptron)
感知器是当时首个可以学习的人工神经网络。Rosenblatt现场演示了其学习识别简单图像的过程,在当时引起了轰动,掀起了第一波神经网络的研究热潮。
但感知器只能做简单的线性分类任务。1969年,人工智能领域的巨擘Minsky指出这点,并同时指出感知器对XOR(异或,即两个输入相同时输出0,不同时输出1)这样的简单逻辑都无法解决。所以,明斯基认为神经网络是没有价值的。
随后,神经网络的研究进入低谷,又称 AI Winter 。
Minsky说过单层神经网络无法解决异或问题,但是当增加一个计算层以后,两层神经网络不仅可以解决异或问题,而且具有非常好的非线性分类效果。
下图为两层神经网络(输入层一般不算在内):
上图中,输出层的输入是上一层的输出。
向量化后的公式为:
注意:
每个神经元节点默认都有偏置变量b,加上偏置变量后的计算公式为:
同时,两层神经网络不再使用sgn函数作为激励函数,而采用平滑的sigmoid函数:
σ(z)=1/(1+e^(-z) )
其图像如下:
理论证明: 两层及以上的神经网络可以无限逼近真实的对应函数,从而模拟数据之间的真实关系 ,这是神经网络强大预测能力的根本。但两层神经网络的计算量太大,当时的计算机的计算能力完全跟不上,直到1986年,Rumelhar和Hinton等人提出了反向传播(Backpropagation,BP)算法,解决了两层神经网络所需要的复杂计算量问题,带动了业界使用两层神经网络研究的热潮。
但好景不长,算法的改进仅使得神经网络风光了几年,然而计算能力不够,局部最优解,调参等一系列问题一直困扰研究人员。90年代中期,由Vapnik等人发明的SVM(Support Vector Machines,支持向量机)算法诞生,很快就在若干个方面体现出了对比神经网络的优势:无需调参;高效;全局最优解。
由于以上原因,SVM迅速打败了神经网络算法成为主流。神经网络的研究再一次进入低谷, AI Winter again 。
多层神经网络一般指两层或两层以上的神经网络(不包括输入层),更多情况下指两层以上的神经网络。
2006年,Hinton提出使用 预训练 ”(pre-training)和“微调”(fine-tuning)技术能优化神经网络训练,大幅度减少训练多层神经网络的时间
并且,他给多层神经网络相关的学习方法赋予了一个新名词–“ 深度学习 ”,以此为起点,“深度学习”纪元开始了:)
“深度学习”一方面指神经网络的比较“深”,也就是层数较多;另一方面也可以指神经网络能学到很多深层次的东西。研究发现,在权重参数不变的情况下,增加神经网络的层数,能增强神经网络的表达能力。
但深度学习究竟有多强大呢?没人知道。2012年,Hinton与他的学生在ImageNet竞赛中,用多层的卷积神经网络成功地对包含一千类别的一百万张图片进行了训练,取得了分类错误率15%的好成绩,这个成绩比第二名高了近11个百分点,充分证明了多层神经网络识别效果的优越性。
同时,科研人员发现GPU的大规模并行矩阵运算模式完美地契合神经网络训练的需要,在同等情况下,GPU的速度要比CPU快50-200倍,这使得神经网络的训练时间大大减少,最终再一次掀起了神经网络研究的热潮,并且一直持续到现在。
2016年基于深度学习的Alpha Go在围棋比赛中以4:1的大比分优势战胜了李世石,深度学习的威力再一次震惊了世界。
神经网络的发展历史曲折荡漾,既有被捧上神坛的高潮,也有无人问津的低谷,中间经历了数次大起大落,我们姑且称之为“三起三落”吧,其背后则是算法的改进和计算能力的持续发展。
下图展示了神经网络自发明以来的发展情况及一些重大时间节点。
当然,对于神经网络我们也要保持清醒的头脑。由上图,每次神经网络研究的兴盛期持续10年左右,从最近2012年算起,或许10年后的2022年,神经网络的发展将再次遇到瓶颈。
神经网络作为机器学习的一种,其模型训练的目的,就是使得参数尽可能的与真实的模型逼近。理论证明,两层及以上的神经网络可以无限逼近真实的映射函数。因此,给定足够的训练数据和训练时间,总能通过神经网络找到无限逼近真实关系的模型。
具体做法:首先给所有权重参数赋上随机值,然后使用这些随机生成的参数值,来预测训练数据中的样本。假设样本的预测目标为yp ,真实目标为y,定义值loss,计算公式如下:
loss = (yp -y) ^2
这个值称之为 损失 (loss),我们的目标就是使对所有训练数据的损失和尽可能的小,这就转化为求loss函数极值的问题。
一个常用方法是高等数学中的求导,但由于参数不止一个,求导后计算导数等于0的运算量很大,所以常用梯度下降算法来解决这样的优化问题。梯度是一个向量,由函数的各自变量的偏导数组成。
比如对二元函数 f =(x,y),则梯度∇f=(∂f/∂x,∂f/∂y)。梯度的方向是函数值上升最快的方向。梯度下降算法每次计算参数在当前的梯度,然后让参数向着梯度的反方向前进一段距离,不断重复,直到梯度接近零时截止。一般这个时候,所有的参数恰好达到使损失函数达到一个最低值的状态。下图为梯度下降的大致运行过程:
在神经网络模型中,由于结构复杂,每次计算梯度的代价很大。因此还需要使用 反向传播 (Back Propagation)算法。反向传播算法利用了神经网络的结构进行计算,不一次计算所有参数的梯度,而是从后往前。首先计算输出层的梯度,然后是第二个参数矩阵的梯度,接着是中间层的梯度,再然后是第一个参数矩阵的梯度,最后是输入层的梯度。计算结束以后,所要的两个参数矩阵的梯度就都有了。当然,梯度下降只是其中一个优化算法,其他的还有牛顿法、RMSprop等。
确定loss函数的最小值后,我们就确定了整个神经网络的权重,完成神经网络的训练。
在神经网络中一样的参数数量,可以用更深的层次去表达。
由上图,不算上偏置参数的话,共有三层神经元,33个权重参数。
由下图,保持权重参数不变,但增加了两层神经元。
在多层神经网络中,每一层的输入是前一层的输出,相当于在前一层的基础上学习,更深层次的神经网络意味着更深入的表示特征,以及更强的函数模拟能力。更深入的表示特征可以这样理解,随着网络的层数增加,每一层对于前一层次的抽象表示更深入。
如上图,第一个隐藏层学习到“边缘”的特征,第二个隐藏层学习到“边缘”组成的“形状”的特征,第三个隐藏层学习到由“形状”组成的“图案”的特征,最后的隐藏层学习到由“图案”组成的“目标”的特征。通过抽取更抽象的特征来对事物进行区分,从而获得更好的区分与分类能力。
前面提到, 明斯基认为Rosenblatt提出的感知器模型不能处理最简单的“异或”(XOR)非线性问题,所以神经网络的研究没有前途,但当增加一层神经元后,异或问题得到了很好地解决,原因何在?原来从输入层到隐藏层,数据发生了空间变换,坐标系发生了改变,因为矩阵运算本质上就是一种空间变换。
如下图,红色和蓝色的分界线是最终的分类结果,可以看到,该分界线是一条非常平滑的曲线。
但是,改变坐标系后,分界线却表现为直线,如下图:
同时,非线性激励函数的引入使得神经网络对非线性问题的表达能力大大加强。
对于传统的朴素贝叶斯、决策树、支持向量机SVM等分类器,提取特征是一个非常重要的前置工作。在正式训练之前,需要花费大量的时间在数据的清洗上,这样分类器才能清楚地知道数据的维度,要不然基于概率和空间距离的线性分类器是没办法进行工作的。然而在神经网络中,由于巨量的线性分类器的堆叠(并行和串行)以及卷积神经网络的使用,它对噪声的忍耐能力、对多通道数据上投射出来的不同特征偏向的敏感程度会自动重视或忽略,这样我们在处理的时候,就不需要使用太多的技巧用于数据的清洗了。有趣的是,业内大佬常感叹,“你可能知道SVM等机器学习的所有细节,但是效果并不好,而神经网络更像是一个黑盒,很难知道它究竟在做什么,但工作效果却很好”。
人类对机器学习的环节干预越少,就意味着距离人工智能的方向越近。神经网络的这个特性非常有吸引力。
1) 谷歌的TensorFlow开发了一个非常有意思的神经网络 入门教程 ,用户可以非常方便地在网页上更改神经网络的参数,并且能看到实时的学习效率和结果,非常适合初学者掌握神经网络的基本概念及神经网络的原理。网页截图如下:
2) 深度学习领域大佬吴恩达不久前发布的《 神经网络和深度学习 》MOOC,现在可以在网易云课堂上免费观看了,并且还有中文字幕。
3) 《神经网络于深度学习》(Michael Nielsen著)、《白话深度学习与TensorFlow》也是不错的入门书籍。
9. 为什么多层神经网络可以解决异或问题
BP神经网络,指的是用了“BP算法”进行训练的“多层感知器模型”。 多层感知器(MLP,Multilayer Perceptron)是一版种前馈人工神经网络模型,权其将输入的多个数据集映射到单一的输出的数据集上,可以解决任何线性不可分问题。 不要把算法和网络搞混了。