导航:首页 > 编程大全 > bp神经网络程序

bp神经网络程序

发布时间:2023-04-18 15:04:06

① matlab BP神经网络训练程序求解释

楼主解决没?这是我知道的

[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %归一化数据,方便后面的预测

net.trainParam. show = 100; %这里的show是显示步数,每100步显示一次
net.trainParam.goal=0.0001; %目标误差,训练得到的数据和原始输入
net.trainParam.lr = 0.01; %lr是学习动量,一般越小越好
y1=sim(net,pn); %sim用来预测的

xlswrite('testdata6',tnew1); ?这里的testdata6是excel表格的名称

你可以看看书的,书上都有介绍

② BP神经网络程序,在程序训练后,误差也达到了合适的范围,如何把输出值显示出来

训练好后,你自己定义的net就是结果,只要把它的权值和阈值导出来即可。

W1=net.IW{1,1};
W2=net.LW{2,1};
B1=net.b{1};
B2=net.b{2};


解释一下:专

net.IW 属性定义了属从网络输入向量到网络层的权值向量(即输入层的权值向量)结构。其值为Nl*Ni的细胞矩阵,Nl为网络层数(net.numLayers),Ni为输入向量数(net.numInputs)。通过访问net.IW{i,j},可以获得第i 个网络层来自第j 个输入向量的权值向量值。 所以一般情况下net,iw{1,1}就是输入层和隐含层之间的权值。

net.LW定义了从一个网络层到另一个网络层的权值向量结构。其值为Nl*Nl的细胞矩阵,Nl为网络层数(net.numLayers)。通过访问net.LW{i,j},可以获得第i 个网络层来自第j 个网络层的权值向量值。 因此,如果网络是单隐含层,net.lw{2,1}就是输出层和隐含层之间的权值。

③ 关于构建一个三层BP神经网络对药品的销售进行预测(程序由matlab编写)

clear all;
close all;
clc;
%p = [2056 2395 2600 2298 1634 1600 1837 1478 1900 2395 2600 2298 1634 1600 1873 1478 1900 1500 2600 2298 1634 1600 1873 1478 1900 1500 2046];
t = [1873 1478 1900 1500 2046 1556];
p = [ 2056 2395 2600 2298 1634 1600];
%--归一化输入输出-- 映射到[0,1]--%
pmax = max(p);
pmin = min(p);
P = (p-pmin)./(pmax-pmin);
tmax = max(t);
tmin = min(t);
T = (t-tmin)./(tmax-tmin);

net =newff(P,T,5,{'tansig','purelin'},'traingdx');
%--设置训练参数--%
net.trainParam.show =50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
net.divideFcn= '';

[net,tr] = train(net,P,T);
A =sim(net,P);
a =A.*(tmax - tmin)+tmin;
x = 7:12;
figure
plot(x,t,'+');
hold on;
plot(x,a,'or');
hold off;
xlabel('month');
ylabel('**')
legend('实际','预测')

④ BP神经网络程序不收敛怎么办

收敛和迭代算法有关.
反向传播算法是定义一个误差er(往往是输出结果与预想结果之间的某个范数),然后求出满足误差极小的权向量.如果把误差看成一个连续函数(泛函)的话,求对权向量各分量的偏导为0即森哗可,但是实际上它是离散的,所以我们需要用迭代来求最小梯度.
如果是新定义算法的话理论上的收敛要扒漏证明,可以证明它在迭代次数趋近无穷的时候等于某一解,也可以证明它满足李普希兹条件(就是带有完备范数和李普希兹常数的那个),这种情形下我们叫做收敛,要是用已有算法或者干脆就是BP算法的时候不需要你证明.理论上不收敛的情况是这样,当迭代次数趋近无穷的时候,权向量的解不唯一.
实际上的收敛是这样,给定一个最大此此行迭代次数n,一个误差限erl,反向传播算法应该很容易找,我不往上写了,每一步权值修正都会使er减小,直观的看就是权向量的分量沿着梯度减小的方向在前进,虽然理论上样本足够大并且n趋于无穷的时候会收敛,但是实际上有可能出现当迭代到第n次,误差er依然大于误差限erl的情况,也就是说我们没有解出来满足要求的权向量,所以网络训练失败,叫做不收敛.当然,也可以使用梯度限来作为迭代终止的条件,这种情况下不收敛就是梯度在迭代了n次以后没有小于某一值,从而没有求出满足要求的权向量;收敛就是求出了满足梯度限的权向量

⑤ BP神经网络matlab源程序代码讲解

newff 创建前向BP网络格式:
net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

其中:PR —— R维输入元素的R×2阶最大最小值矩阵; Si —— 第i层神经元的个数,共N1层; TFi——第i层的转移函数,默认‘tansig’; BTF—— BP网络的训练函数,默认‘trainlm’; BLF—— BP权值/偏差学习函数,默认’learngdm’ PF ——性能函数,默认‘mse’;(误差)

e.g.
P = [0 1 2 3 4 5 6 7 8 9 10];T = [0 1 2 3 4 3 2 1 2 3 4];
net = newff([0 10],[5 1],{'tansig' 'purelin'});net.trainparam.show=50; %每次循环50次net.trainParam.epochs = 500; %最大循环500次
net.trainparam.goal=0.01; %期望目标误差最小值
net = train(net,P,T); %对网络进行反复训练
Y = sim(net,P)Figure % 打开另外一个图形窗口
plot(P,T,P,Y,'o')

⑥ BP神经网络matlab程序出错,还请各位不吝赐教,谢谢了

你应该用的是新版的matlab,但是你的newff却是按照旧版的格式来输入族毁樱的,所以出错。
修改为net=newff(P1',T1',10,{'tansig','logsig'余租},'trainlm')。10为隐含层的神经元个数,输入层和输出层由输入样本和输出样本决定(新兆丛版matlab自动根据样本情况设定),tansig为隐含层到输出层的传输函数,logsig为输出层到输出的传输函数

⑦ 求一个bp神经网络预测模型的MATLAB程序

BP神经网络预测的步骤:

1、输入和输出数据。

2、创建网络。fitnet()

3、划分训练,测试和验证数据的比例。net.divideParam.trainRatio;net.divideParam.valRatio;net.divideParam.testRatio

4、训练网络。train()

5、根据图表判断拟合好坏。ploterrcorr();parcorr();plotresponse()

6、预测往后数据。net()

7、画出预测图。plot()

执行下列命令

BP_prediction

得到结果:

[ 2016, 14749.003045557066798210144042969]

[ 2017, 15092.847215188667178153991699219]

[ 2018, 15382.150005970150232315063476562]

[ 2019, 15398.85769711434841156005859375]

[ 2020, 15491.935150090605020523071289062]

⑧ BP神经网络——Python简单实现三层神经网络(Numpy)

我们将在Python中创建一个NeuralNetwork类,以训练神经元以给出准确的预测。该课程还将具有其他帮助程序功能。

1. 应用Sigmoid函数
我们将使用 Sigmoid函数 (它绘制一条“ S”形曲线)作为神经网络的激活函数。

2. 训练模型
这是我们将教神经网络做出准确预测的阶段。每个输入将具有权重(正或负)。
这意味着具有大量正权重或大量负权重的输入将对结果输出产生更大的影响。

我们最初是将每个权重分配给一个随机数。

本文参考翻译于此网站 —— 原文

⑨ BP神经网络原理

人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(Error Back-Prooaeation),简称为BP网络。

在1986年以Rumelhart和McCelland为首的科学家出版的《Parallel Distributed Processing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。多层感知网络是一种具有三层或三层以上的阶层型神经网络。典型的多层感知网络是三层、前馈的阶层网络(图4.1),即:输入层、隐含层(也称中间层)、输出层,具体如下:

图4.1 三层BP网络结构

(1)输入层

输入层是网络与外部交互的接口。一般输入层只是输入矢量的存储层,它并不对输入矢量作任何加工和处理。输入层的神经元数目可以根据需要求解的问题和数据表示的方式来确定。一般而言,如果输入矢量为图像,则输入层的神经元数目可以为图像的像素数,也可以是经过处理后的图像特征数。

(2)隐含层

1989年,Robert Hecht Nielsno证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映射。增加隐含层数虽然可以更进一步的降低误差、提高精度,但是也使网络复杂化,从而增加了网络权值的训练时间。误差精度的提高也可以通过增加隐含层中的神经元数目来实现,其训练效果也比增加隐含层数更容易观察和调整,所以一般情况应优先考虑增加隐含层的神经元个数,再根据具体情况选择合适的隐含层数。

(3)输出层

输出层输出网络训练的结果矢量,输出矢量的维数应根据具体的应用要求来设计,在设计时,应尽可能减少系统的规模,使系统的复杂性减少。如果网络用作识别器,则识别的类别神经元接近1,而其它神经元输出接近0。

以上三层网络的相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接,连接强度构成网络的权值矩阵W。

BP网络是以一种有教师示教的方式进行学习的。首先由教师对每一种输入模式设定一个期望输出值。然后对网络输入实际的学习记忆模式,并由输入层经中间层向输出层传播(称为“模式顺传播”)。实际输出与期望输出的差即是误差。按照误差平方最小这一规则,由输出层往中间层逐层修正连接权值,此过程称为“误差逆传播”(陈正昌,2005)。所以误差逆传播神经网络也简称BP(Back Propagation)网。随着“模式顺传播”和“误差逆传播”过程的交替反复进行。网络的实际输出逐渐向各自所对应的期望输出逼近,网络对输入模式的响应的正确率也不断上升。通过此学习过程,确定下各层间的连接权值后。典型三层BP神经网络学习及程序运行过程如下(标志渊,2006):

(1)首先,对各符号的形式及意义进行说明:

网络输入向量Pk=(a1,a2,...,an);

网络目标向量Tk=(y1,y2,...,yn);

中间层单元输入向量Sk=(s1,s2,...,sp),输出向量Bk=(b1,b2,...,bp);

输出层单元输入向量Lk=(l1,l2,...,lq),输出向量Ck=(c1,c2,...,cq);

输入层至中间层的连接权wij,i=1,2,...,n,j=1,2,...p;

中间层至输出层的连接权vjt,j=1,2,...,p,t=1,2,...,p;

中间层各单元的输出阈值θj,j=1,2,...,p;

输出层各单元的输出阈值γj,j=1,2,...,p;

参数k=1,2,...,m。

(2)初始化。给每个连接权值wij、vjt、阈值θj与γj赋予区间(-1,1)内的随机值。

(3)随机选取一组输入和目标样本

提供给网络。

(4)用输入样本

、连接权wij和阈值θj计算中间层各单元的输入sj,然后用sj通过传递函数计算中间层各单元的输出bj

基坑降水工程的环境效应与评价方法

bj=f(sj) j=1,2,...,p (4.5)

(5)利用中间层的输出bj、连接权vjt和阈值γt计算输出层各单元的输出Lt,然后通过传递函数计算输出层各单元的响应Ct

基坑降水工程的环境效应与评价方法

Ct=f(Lt) t=1,2,...,q (4.7)

(6)利用网络目标向量

,网络的实际输出Ct,计算输出层的各单元一般化误差

基坑降水工程的环境效应与评价方法

(7)利用连接权vjt、输出层的一般化误差dt和中间层的输出bj计算中间层各单元的一般化误差

基坑降水工程的环境效应与评价方法

(8)利用输出层各单元的一般化误差

与中间层各单元的输出bj来修正连接权vjt和阈值γt

基坑降水工程的环境效应与评价方法

(9)利用中间层各单元的一般化误差

,输入层各单元的输入Pk=(a1,a2,...,an)来修正连接权wij和阈值θj

基坑降水工程的环境效应与评价方法

(10)随机选取下一个学习样本向量提供给网络,返回到步骤(3),直到m个训练样本训练完毕。

(11)重新从m个学习样本中随机选取一组输入和目标样本,返回步骤(3),直到网路全局误差E小于预先设定的一个极小值,即网络收敛。如果学习次数大于预先设定的值,网络就无法收敛。

(12)学习结束。

可以看出,在以上学习步骤中,(8)、(9)步为网络误差的“逆传播过程”,(10)、(11)步则用于完成训练和收敛过程。

通常,经过训练的网络还应该进行性能测试。测试的方法就是选择测试样本向量,将其提供给网络,检验网络对其分类的正确性。测试样本向量中应该包含今后网络应用过程中可能遇到的主要典型模式(宋大奇,2006)。这些样本可以直接测取得到,也可以通过仿真得到,在样本数据较少或者较难得到时,也可以通过对学习样本加上适当的噪声或按照一定规则插值得到。为了更好地验证网络的泛化能力,一个良好的测试样本集中不应该包含和学习样本完全相同的模式(董军,2007)。

阅读全文

与bp神经网络程序相关的资料

热点内容
ps文件过大闪退怎么办 浏览:325
中国反诈app是什么梗 浏览:830
cnc如何编程零件程序 浏览:306
怎样把word里面的批注删掉 浏览:807
如何不删数据卸载软件视频 浏览:150
有两个活动网络 浏览:598
cad文件如何虚拟打印 浏览:799
vb编程软件怎么写 浏览:309
ps图层移到另一文件变模糊 浏览:753
腾讯管家强力删除文件 浏览:284
临时大文件传输工具哪个好 浏览:406
网信千金app 浏览:753
bjss 浏览:823
熊猫tvapp怎么领竹子 浏览:863
管理学选择工具 浏览:226
调试程序debug的使用实验报告 浏览:301
什么app可以录制屏幕 浏览:848
英雄联盟保存回放在哪个文件夹 浏览:693
微信卖盗版 浏览:190
编程适合什么人群学习 浏览:479

友情链接