① 前向神经是什么类型的神经网络
神经网络有前馈神经网络和反馈神经网络,亏模前向神经网络也就是前馈神经网络。x0dx0a前馈型网络x0dx0a各销脊缓神经元接收前一层的输入,并输出给下一层,没有反馈。节点分为两类,即输入节点和计算节点,每一个计算节点可有多个输入,但只有一个输出,通常前馈型网络可分为不同的层,第i层的输入只与第i-1层的输出相连,输入与输出节点与外界相连,而其他中间层则称为隐层。x0dx0a反馈型网络x0dx0a所有节点都是计算节点,同时可接收输入,并向外界输出。野颂x0dx0ax0dx0a常见的前馈神经网络有BP网络,RBF网络等.
② 2.前馈型神经网络与反馈型神经网络
随着神经网络的不断发展,越来越多的人工神经网络模型也被创造出来了,其中,具有代表性的就是前馈型神经网络模型以及反馈型神经网络模型。 1.前馈型神经网络模型 前馈神经网络(Feedforward Neural Network),简称前馈网络,是人工神经网络的一种。在此种神经网络中,各神经元从输入层开始,接收前一级输入,并输出到下一级,直至输出层。整个网络中无反馈,可用一个有向无环图表示。 前馈神经网络采用一种单向多层结构,其拓扑结构如图1所示。其中每一层包含若干个神经元,同一层的神经元之间没有互相连接,层间信息的传送只沿一个方向进行。其中第一层称为输入层。最后一层为输出层.中间为隐含层,简称隐层。隐层可以是一层。也可以是多层 2.反馈型神经神经网络 反馈神经网络是一种反馈动力学系统。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。Hopfield神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能,如果将李雅普诺夫函数定义为巡游函数,Hopfield神经网络还可以用来解决快速寻优问题,Hopfield网络可以分为离散型Hopfield网络和连续型Hopfield网络,其中,离散型Hopfield网络拓扑结构如图2所示。③ 一文看懂四种基本的神经网络架构
原文链接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/
更多干货就在我的个人博客 http://blackblog.tech 欢迎关注
刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。
神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
一般来说,神经网络的架构可以分为三类:
前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。
循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。
其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。
首先还是这张图
这是一个M-P神经元
一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。
可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。
与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。
如果我们要训练一个感知机,应该怎么办呢?
我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下:
这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。
多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型,
谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如:
图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。
物体光照:像素的强度被光照强烈影响。
图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。
情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。
这里举AlexNet为例:
·输入:224×224大小的图片,3通道
·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
·第一层max-pooling:2×2的核。
·第二层卷积:5×5卷积核256个,每个GPU上128个。
·第二层max-pooling:2×2的核。
·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
·第五层卷积:3×3的卷积核256个,两个GPU上个128个。
·第五层max-pooling:2×2的核。
·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
·第二层全连接:4096维
·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。
卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。
传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。
这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。
那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。
从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。
如果反复把式2带入到式1,我们将得到:
在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。
首先什么是玻尔兹曼机?
[图片上传失败...(image-d36b31-1519636788074)]
如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。
玻尔兹曼机和递归神经网络相比,区别体现在以下几点:
1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。
2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。
而受限玻尔兹曼机是什么呢?
最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。
h表示隐藏层,v表示显层
在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。
具体的公式推导在这里就不展示了
DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。
DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。
生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。
生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。
GAN一般由两个网络组成,生成模型网络,判别模型网络。
生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。
举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。
传统的判别网络:
生成对抗网络:
下面展示一个cDCGAN的例子(前面帖子中写过的)
生成网络
判别网络
最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。
本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。
④ 前馈神经网络、BP神经网络、卷积神经网络的区别与联系
一、计算方法不同
1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。
2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。
3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。
二、用途不同
1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。
2、BP神经网络:
(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;
(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;
(3)分类:把输入向量所定义的合适方式进行分类;
(4)数据压缩:减少输出向量维数以便于传输或存储。
3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。
联系:
BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。
三、作用不同
1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。
2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。
3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。
(4)前馈型神经网络和反馈型神经网络扩展阅读:
1、BP神经网络优劣势
BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。
①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。
②容易陷入局部极小值。
③网络层数、神经元个数的选择没有相应的理论指导。
④网络推广能力有限。
2、人工神经网络的特点和优越性,主要表现在以下三个方面
①具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。
②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
③具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
⑤ 前馈型神经网络中各个层之间是什么的
前馈型神经网镇瞎段络的中各个层之间是无环的,反馈型神经网络中各个层之间是有环的。⑥ (七)神经网络基本结构
目前为止,我们已经学习了2个机器学习模型。线性回归一般用来处理线性问题,逻辑回归用来处理2分类问题。虽然逻辑回归也可以处理非线性的分类问题,但是当我们有非常多的特征时,例如大于100个变量,将会有数量非常惊人的特征组合。这对于一般的逻辑回归来说需要计算的特征太多了,负荷太大。而神经网络既可以答衫解决复杂的非线性分类问题,又可以避免庞大的计算量。
人工神经网络是由很多神经元(激活单元)构成的,神经元是神经网络的基本元素。
实际上,可以这样理解神经元工作过程,当将输入送进神经元后,神经元将输入与权值线性组合(实际上就是θ T X)输出一个线性表达式,再将这个表达式送哗举拿入激活函数中,便得到了神经元的真实输出。
神经网络由好多个激活单元构成,如下图所示:
激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。
(1) 线性函数( Liner Function )
(2) 斜面函数( Ramp Function )**
(3) 阈值函数( Threshold Function )**
以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。
(4) S形函数( Sigmoid Function )
S形函数与双极S形函数的图像如下:
双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。由于S形函数与双极S形函数都是 可导的 (导函数是连续函数),因此适合用在BP神经乱搭网络中。(BP算法要求激活函数可导)
人工神经网络中,最常用的激活函数就是sigmoid函数
神经网络是由大量的神经元互联而构成的网络。根据网络中神经元的互联方式,常见网络结构主要可以分为下面3类:
前馈网络也称前向网络,是最常见的神经网络,前文提到的都是前馈网络。称之为前馈是因为它在输出和模型本身之间没有反馈,数据只能向前传送,直到到达输出层,层间没有向后的反馈信号。
反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。
自组织神经网络是一种无监督学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。
⑦ 前馈型神经网络和反馈型神经网络之间的联系和区别
前馈型神经网络和反馈型神经网络都是人工神经网络的一种,但它们在神经元之间连接的方式和信息传递的方式上存在区别。具体来说:
1、连接方式不同:前馈型神经网络中,神经元之间只存在向前的连接,即输入层的神经元只与隐藏层的神经元相连,隐藏层的神经元也只与输出层的神经元相连。而反馈型神经网络中,神经元之间可能存在循环连接,因此信息可以在神经燃大元之间反复传递。
2、信息传递方式不同:前馈型神经网络的信息传递是单向的,从输入层到输出层,没有回馈。而反馈型神经网络存在反馈机制,信息可以从输出层返回到输入层或中间层,并影响网络的输出结果。
3、应用场景不同:由于反馈型神经网络具有记忆功能,能够处理带有时序关系的数据,因此祥段备在语音识别、时间序列预测等领域有着广泛的应用。而前馈型神经网络则更适合处理非时序数据问题,如图像分类、文本分类等。
4、并行计算能力强:人工神经网络的计算过程可以进行并行处理,能够处理大量的数据和高维度的数据。
5、可自适应:人工神经网络可以根据不同的任务和需求进行自适应调整,能够有效地处理不同类型的数据和问题。
6、模式识别能力强:人工神经网络可以通过学习和训练来识别和分类不同的模式和对象,能够应用于图像识别、语音识别等领域。
总的来说,人工神经网络具有适应性强、学习能力强、容错性好、计算能力强等优点,可以应用于多种领域和问题中。同时,由于其模拟人脑神经元的方式,也有一定的生物学启示意义。
⑧ 前馈式神经网络与反馈式神经网络有何不同
前馈式神经网络和反馈式神经网络是两种主要的神经网络架构。
前馈式神经网络是信息在网络中单向流动的结构,它的信息只能从输入层流向输出层。常见的迟掘慎前馈式神经网络有多层感知器和卷积神经网络。
反馈散镇式神经网络是信息在网络中双码敬向流动的结构,信息可以从输入层流向输出层,也可以从输出层流回输入层。常见的反馈式神经网络有循环神经网络和递归神经网络。
前馈式神经网络适用于静态任务,而反馈式神经网络适用于动态任务。
⑨ 神经网络可以按什么分类
1、按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经元按功能和顺序的不同分肆含为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间嫌棚各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。
而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型
2、按照网络信息流向分类
从神经网络内部信息传递方向来看,可以分为裂者笑两种类型:前馈型网络和反馈型网络。
单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的.。前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。
反馈型网络的结构与单层全互连结构网络相同。在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。