① 最小二乘法、回归分析法、灰色预测法、决策论、神经网络等5个算法的使用范围及优缺点是什么
最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。优点:实现简单,计算简单。缺点:不能拟合非线性数据.
回归分析法:指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。优点:在分析多因素模型时,更加简单和方便,不仅可以预测并求出函数,还可以自己对结果进行残差的检验,检验模型的精度。缺点:回归方程式只是一种推测,这影响了因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。
灰色预测法:
色预测法是一种对含有不确定因素的系统进行预测的方法 。它通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。它用等时间距离观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或者达到某一特征量的时间。优点:对于不确定因素的复杂系统预测效果较好,且所需样本数据较小。缺点:基于指数率的预测没有考虑系统的随机性,中长期预测精度较差。
决策树:在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。优点:能够处理不相关的特征;在相对短的时间内能够对大型数据源做出可行且效果良好的分析;计算简单,易于理解,可解释性强;比较适合处理有缺失属性的样本。缺点:忽略了数据之间的相关性;容易发生过拟合(随机森林可以很大程度上减少过拟合);在决策树当中,对于各类别样本数量不一致的数据,信息增益的结果偏向于那些具有更多数值的特征。
神经网络:优点:分类的准确度高;并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系;具备联想记忆的功能。缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。
② 神经网络算法 遗传算法 模糊算法 哪个好
没有哪种算法更好的说法,因为每种算法都有自己的优势。只能说某种算法回在处理某答种问题时,效果更好更合适。
神经网络不能说是一种算法,它是一种数学网络结构,各神经元的权值、阈值是用某种训练算法计算出来的。神经网络适用于非线性系统,可用于难以用数学表达式来描述的系统。
遗传算法在全局寻优问题上效果很好,因其收敛速度较快,且不易陷入局部极小点。其中实数编码法适合与神经网络结合,例如GA-BP神经网络。
模糊算法可将一些难以量化的参数模糊处理,并且算法较简单,尤其是适用于专家经验占主要地位的系统,因为添加一条专家经验只需往规则库里添加一条语句即可。用这种算法要注意区间不能划得太宽,否则算法太不精确。
③ 神经网络的主要内容特点
(1) 神经网络的一般特点
作为一种正在兴起的新型技术神经网络有着自己的优势,他的主要特点如下:
① 由于神经网络模仿人的大脑,采用自适应算法。使它较之专家系统的固定的推理方式及传统计算机的指令程序方式更能够适应化环境的变化。总结规律,完成某种运算、推理、识别及控制任务。因而它具有更高的智能水平,更接近人的大脑。
② 较强的容错能力,使神经网络能够和人工视觉系统一样,根据对象的主要特征去识别对象。
③ 自学习、自组织功能及归纳能力。
以上三个特点是神经网络能够对不确定的、非结构化的信息及图像进行识别处理。石油勘探中的大量信息就具有这种性质。因而,人工神经网络是十分适合石油勘探的信息处理的。
(2) 自组织神经网络的特点
自组织特征映射神经网络作为神经网络的一种,既有神经网络的通用的上面所述的三个主要的特点又有自己的特色。
① 自组织神经网络共分两层即输入层和输出层。
② 采用竞争学记机制,胜者为王,但是同时近邻也享有特权,可以跟着竞争获胜的神经元一起调整权值,从而使得结果更加光滑,不想前面的那样粗糙。
③ 这一网络同时考虑拓扑结构的问题,即他不仅仅是对输入数据本身的分析,更考虑到数据的拓扑机构。
权值调整的过程中和最后的结果输出都考虑了这些,使得相似的神经元在相邻的位置,从而实现了与人脑类似的大脑分区响应处理不同类型的信号的功能。
④ 采用无导师学记机制,不需要教师信号,直接进行分类操作,使得网络的适应性更强,应用更加的广泛,尤其是那些对于现在的人来说结果还是未知的数据的分类。顽强的生命力使得神经网络的应用范围大大加大。
④ 人工智能:什么是人工神经网络
许多 人工智能 计算机系统的核心技术是人工神经网络(ANN),而这种网络的灵感来源于人类大脑中的生物结构。
通过使用连接的“神经元”结构,这些网络可以通过“学习”并在没有人类参与的情况下处理和评估某些数据。
这样的实际实例之一是使用人工神经网络(ANN)识别图像中的对象。在构建一个识别“猫“图像的一个系统中,将在包含标记为“猫”的图像的数据集上训练人工神经网络,该数据集可用作任何进行分析的参考点。正如人们可能学会根据尾巴或皮毛等独特特征来识别狗一样,人工神经网络(ANN)也可以通过将每个图像分解成不同的组成部分(如颜色和形状)进行识别。
实际上,神经网络提供了位于托管数据之上的排序和分类级别,可基于相似度来辅助数据的聚类和分组。可以使用人工神经网络(ANN)生成复杂的垃圾邮件过滤器,查找欺诈行为的算法以及可以精确了解情绪的客户关系工具。
人工神经网络如何工作
人工神经网络的灵感来自人脑的神经组织,使用类似于神经元的计算节点构造而成,这些节点沿着通道(如神经突触的工作方式)进行信息交互。这意味着一个计算节点的输出将影响另一个计算节点的处理。
神经网络标志着人工智能发展的巨大飞跃,在此之前,人工智能一直依赖于使用预定义的过程和定期的人工干预来产生所需的结果。人工神经网络可以使分析负载分布在多个互连层的网络中,每个互连层包含互连节点。在处理信息并对其进行场景处理之后,信息将传递到下一个节点,然后向下传递到各个层。这个想法是允许将其他场景信息接入网络,以通知每个阶段的处理。
单个“隐藏”层神经网络的基本结构
就像渔网的结构一样,神经网络的一个单层使用链将处理节点连接在一起。大量的连接使这些节点之间的通信得到增强,从而提高了准确性和数据处理吞吐量。
然后,人工神经网络将许多这样的层相互叠放以分析数据,从而创建从第一层到最后一层的输入和输出数据流。尽管其层数将根据人工神经网络的性质及其任务而变化,但其想法是将数据从一层传递到另一层,并随其添加附加的场景信息。
人脑是用3D矩阵连接起来的,而不是大量堆叠的图层。就像人类大脑一样,节点在接收到特定刺激时会在人工神经网络上“发射”信号,并将信号传递到另一个节点。但是,对于人工神经网络,输入信号定义为实数,输出为各种输入的总和。
这些输入的值取决于它们的权重,该权重用于增加或减少与正在执行的任务相对应的输入数据的重要性。其目标是采用任意数量的二进制数值输入并将其转换为单个二进制数值输出。
更复杂的神经网络提高了数据分析的复杂性
早期的神经网络模型使用浅层结构,其中只使用一个输入和输出层。而现代的系统由一个输入层和一个输出层组成,其中输入层首先将数据输入网络,多个“隐藏”层增加了数据分析的复杂性。
这就是“深度学习”一词的由来——“深度”部分专门指任何使用多个“隐藏”层的神经网络。
聚会的例子
为了说明人工神经网络在实际中是如何工作的,我们将其简化为一个实际示例。
想象一下你被邀请参加一个聚会,而你正在决定是否参加,这可能需要权衡利弊,并将各种因素纳入决策过程。在此示例中,只选择三个因素——“我的朋友会去吗?”、“聚会地点远吗?”、“天气会好吗?”
通过将这些考虑因素转换为二进制数值,可以使用人工神经网络对该过程进行建模。例如,我们可以为“天气”指定一个二进制数值,即‘1'代表晴天,‘0'代表恶劣天气。每个决定因素将重复相同的格式。
然而,仅仅赋值是不够的,因为这不能帮助你做出决定。为此需要定义一个阈值,即积极因素的数量超过消极因素的数量。根据二进制数值,合适的阈值可以是“2”。换句话说,在决定参加聚会之前,需要两个因素的阈值都是“1”,你才会决定去参加聚会。如果你的朋友要参加聚会(‘1'),并且天气很好(‘1'),那么这就表示你可以参加聚会。
如果天气不好(‘0'),并且聚会地点很远(‘0'),则达不到这一阈值,即使你的朋友参加(‘1'),你也不会参加聚会。
神经加权
诚然,这是神经网络基本原理的一个非常基本的例子,但希望它有助于突出二进制值和阈值的概念。然而,决策过程要比这个例子复杂得多,而且通常情况下,一个因素比另一个因素对决策过程的影响更大。
要创建这种变化,可以使用“神经加权”——-通过乘以因素的权重来确定因素的二进制值对其他因素的重要性。
尽管示例中的每个注意事项都可能使你难以决策,但你可能会更重视其中一个或两个因素。如果你不愿意在大雨中出行去聚会,那恶劣的天气将会超过其他两个考虑因素。在这一示例中,可以通过赋予更高的权重来更加重视天气因素的二进制值:
天气= w5
朋友= w2
距离= w2
如果假设阈值现在已设置为6,则恶劣的天气(值为0)将阻止其余输入达到所需的阈值,因此该节点将不会“触发”(这意味着你将决定不参加聚会)。
虽然这是一个简单的示例,但它提供了基于提供的权重做出决策的概述。如果要将其推断为图像识别系统,则是否参加聚会(输入)的各种考虑因素将是给定图像的折衷特征,即颜色、大小或形状。例如,对识别狗进行训练的系统可以对形状或颜色赋予更大的权重。
当神经网络处于训练状态时,权重和阈值将设置为随机值。然后,当训练数据通过网络传递时将不断进行调整,直到获得一致的输出为止。
神经网络的好处
神经网络可以有机地学习。也就是说,神经网络的输出结果并不受输入数据的完全限制。人工神经网络可以概括输入数据,使其在模式识别系统中具有价值。
他们还可以找到实现计算密集型答案的捷径。人工神经网络可以推断数据点之间的关系,而不是期望数据源中的记录是明确关联的。
它们也可以是容错的。当神经网络扩展到多个系统时,它们可以绕过无法通信的缺失节点。除了围绕网络中不再起作用的部分进行路由之外,人工神经网络还可以通过推理重新生成数据,并帮助确定不起作用的节点。这对于网络的自诊断和调试非常有用。
但是,深度神经网络提供的最大优势是能够处理和聚类非结构化数据,例如图片、音频文件、视频、文本、数字等数据。在分析层次结构中,每一层节点都在前一层的输出上进行训练,深层神经网络能够处理大量的这种非结构化数据,以便在人类处理分析之前找到相似之处。
神经网络的例子
神经网络应用还有许多示例,可以利用它从复杂或不精确数据中获得见解的能力。
图像识别人工神经网络可以解决诸如分析特定物体的照片等问题。这种算法可以用来区分狗和猫。更重要的是,神经网络已经被用于只使用细胞形状信息来诊断癌症。
近30年来,金融神经网络被用于汇率预测、股票表现和选择预测。神经网络也被用来确定贷款信用评分,学习正确识别良好的或糟糕的信用风险。而电信神经网络已被电信公司用于通过实时评估网络流量来优化路由和服务质量。
⑤ 神经网络算法可以解决的问题有哪些
人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好的自组织自学习能力等特点。BP(Back Propagation)算法又称为误差 反向传播算法,是人工神经网络中的一种监督式的学习算法。BP 神经网络算法在理 论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许 多领域都有着广泛的应用前景。
工作原理
人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。
神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。
树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。
人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。
人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。
与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
⑥ 一文读懂神经网络
要说近几年最引人注目的技术,无疑的,非人工智能莫属。无论你是否身处科技互联网行业,随处可见人工智能的身影:从 AlphaGo 击败世界围棋冠军,到无人驾驶概念的兴起,再到科技巨头 All in AI,以及各大高校向社会输送海量的人工智能专业的毕业生。以至于人们开始萌生一个想法:新的革命就要来了,我们的世界将再次发生一次巨变;而后开始焦虑:我的工作是否会被机器取代?我该如何才能抓住这次革命?
人工智能背后的核心技术是深度神经网络(Deep Neural Network),大概是一年前这个时候,我正在回老家的高铁上学习 3Blue1Brown 的 Neural Network 系列视频课程,短短 4 集 60 多分钟的时间,就把神经网络从 High Level 到推导细节说得清清楚楚,当时的我除了获得新知的兴奋之外,还有一点新的认知,算是给头脑中的革命性的技术泼了盆冷水:神经网络可以解决一些复杂的、以前很难通过写程序来完成的任务——例如图像、语音识别等,但它的实现机制告诉我,神经网络依然没有达到生物级别的智能,短期内期待它来取代人也是不可能的。
一年后的今天,依然在这个春运的时间点,将我对神经网络的理解写下来,算是对这部分知识的一个学习笔记,运气好的话,还可以让不了解神经网络的同学了解起来。
维基网络这样解释 神经网络 :
这个定义比较宽泛,你甚至还可以用它来定义其它的机器学习算法,例如之前我们一起学习的逻辑回归和 GBDT 决策树。下面我们具体一点,下图是一个逻辑回归的示意图:
其中 x1 和 x2 表示输入,w1 和 w2 是模型的参数,z 是一个线性函数:
接着我们对 z 做一个 sigmod 变换(图中蓝色圆),得到输出 y:
其实,上面的逻辑回归就可以看成是一个只有 1 层 输入层 , 1 层 输出层 的神经网络,图中容纳数字的圈儿被称作 神经元 ;其中,层与层之间的连接 w1、w2 以及 b,是这个 神经网络的参数 ,层之间如果每个神经元之间都保持着连接,这样的层被称为 全连接层 (Full Connection Layer),或 稠密层 (Dense Layer);此外,sigmoid 函数又被称作 激活函数 (Activation Function),除了 sigmoid 外,常用的激活函数还有 ReLU、tanh 函数等,这些函数都起到将线性函数进行非线性变换的作用。我们还剩下一个重要的概念: 隐藏层 ,它需要把 2 个以上的逻辑回归叠加起来加以说明:
如上图所示,除输入层和输出层以外,其他的层都叫做 隐藏层 。如果我们多叠加几层,这个神经网络又可以被称作 深度神经网络 (Deep Neural Network),有同学可能会问多少层才算“深”呢?这个没有绝对的定论,个人认为 3 层以上就算吧:)
以上,便是神经网络,以及神经网络中包含的概念,可见,神经网络并不特别,广义上讲,它就是
可见,神经网络和人脑神经也没有任何关联,如果我们说起它的另一个名字—— 多层感知机(Mutilayer Perceptron) ,就更不会觉得有多么玄乎了,多层感知机创造于 80 年代,可为什么直到 30 年后的今天才爆发呢?你想得没错,因为改了个名字……开个玩笑;实际上深度学习这项技术也经历过很长一段时间的黑暗低谷期,直到人们开始利用 GPU 来极大的提升训练模型的速度,以及几个标志性的事件:如 AlphaGo战胜李世石、Google 开源 TensorFlow 框架等等,感兴趣的同学可以翻一下这里的历史。
就拿上图中的 3 个逻辑回归组成的神经网络作为例子,它和普通的逻辑回归比起来,有什么优势呢?我们先来看下单逻辑回归有什么劣势,对于某些情况来说,逻辑回归可能永远无法使其分类,如下面数据:
这 4 个样本画在坐标系中如下图所示
因为逻辑回归的决策边界(Decision Boundary)是一条直线,所以上图中的两个分类,无论你怎么做,都无法找到一条直线将它们分开,但如果借助神经网络,就可以做到这一点。
由 3 个逻辑回归组成的网络(这里先忽略 bias)如下:
观察整个网络的计算过程,在进入输出层之前,该网络所做的计算实际上是:
即把输入先做了一次线性变换(Linear Transformation),得到 [z1, z2] ,再把 [z1, z2] 做了一个非线性变换(sigmoid),得到 [x1', x2'] ,(线性变换的概念可以参考 这个视频 )。从这里开始,后面的操作就和一个普通的逻辑回归没有任何差别了,所以它们的差异在于: 我们的数据在输入到模型之前,先做了一层特征变换处理(Feature Transformation,有时又叫做特征抽取 Feature Extraction),使之前不可能被分类的数据变得可以分类了 。
我们继续来看下特征变换的效果,假设 为 ,带入上述公式,算出 4 个样本对应的 [x1', x2'] 如下:
再将变换后的 4 个点绘制在坐标系中:
显然,在做了特征变换之后,这两个分类就可以很容易的被一条决策边界分开了。
所以, 神经网络的优势在于,它可以帮助我们自动的完成特征变换或特征提取 ,尤其对于声音、图像等复杂问题,因为在面对这些问题时,人们很难清晰明确的告诉你,哪些特征是有用的。
在解决特征变换的同时,神经网络也引入了新的问题,就是我们需要设计各式各样的网络结构来针对性的应对不同的场景,例如使用卷积神经网络(CNN)来处理图像、使用长短期记忆网络(LSTM)来处理序列问题、使用生成式对抗网络(GAN)来写诗和作图等,就连去年自然语言处理(NLP)中取得突破性进展的 Transformer/Bert 也是一种特定的网络结构。所以, 学好神经网络,对理解其他更高级的网络结构也是有帮助的 。
上面说了,神经网络可以看作一个非线性函数,该函数的参数是连接神经元的所有的 Weights 和 Biases,该函数可以简写为 f(W, B) ,以手写数字识别的任务作为例子:识别 MNIST 数据集 中的数字,数据集(MNIST 数据集是深度学习中的 HelloWorld)包含上万张不同的人写的数字图片,共有 0-9 十种数字,每张图片为 28*28=784 个像素,我们设计一个这样的网络来完成该任务:
把该网络函数所具备的属性补齐:
接下来的问题是,这个函数是如何产生的?这个问题本质上问的是这些参数的值是怎么确定的。
在机器学习中,有另一个函数 c 来衡量 f 的好坏,c 的参数是一堆数据集,你输入给 c 一批 Weights 和 Biases,c 输出 Bad 或 Good,当结果是 Bad 时,你需要继续调整 f 的 Weights 和 Biases,再次输入给 c,如此往复,直到 c 给出 Good 为止,这个 c 就是损失函数 Cost Function(或 Loss Function)。在手写数字识别的列子中,c 可以描述如下:
可见,要完成手写数字识别任务,只需要调整这 12730 个参数,让损失函数输出一个足够小的值即可,推而广之,绝大部分神经网络、机器学习的问题,都可以看成是定义损失函数、以及参数调优的问题。
在手写识别任务中,我们既可以使用交叉熵(Cross Entropy)损失函数,也可以使用 MSE(Mean Squared Error)作为损失函数,接下来,就剩下如何调优参数了。
神经网络的参数调优也没有使用特别的技术,依然是大家刚接触机器学习,就学到的梯度下降算法,梯度下降解决了上面迭代过程中的遗留问题——当损失函数给出 Bad 结果时,如何调整参数,能让 Loss 减少得最快。
梯度可以理解为:
把 Loss 对应到 H,12730 个参数对应到 (x,y),则 Loss 对所有参数的梯度可以表示为下面向量,该向量的长度为 12730:
$$
abla L(w,b) = left[
frac{partial L}{partial w_1},
frac{partial L}{partial w_2},...,
frac{partial L}{partial b_{26}}
ight] ^ op
$$
所以,每次迭代过程可以概括为
用梯度来调整参数的式子如下(为了简化,这里省略了 bias):
上式中, 是学习率,意为每次朝下降最快的方向前进一小步,避免优化过头(Overshoot)。
由于神经网络参数繁多,所以需要更高效的计算梯度的算法,于是,反向传播算法(Backpropagation)呼之欲出。
在学习反向传播算法之前,我们先复习一下微积分中的链式法则(Chain Rule):设 g = u(h) , h = f(x) 是两个可导函数,x 的一个很小的变化 △x 会使 h 产生一个很小的变化 △h,从而 g 也产生一个较小的变化 △g,现要求 △g/△x,可以使用链式法则:
有了以上基础,理解反向传播算法就简单了。
假设我们的演示网络只有 2 层,输入输出都只有 2 个神经元,如下图所示:
其中 是输入, 是输出, 是样本的目标值,这里使用的损失函数 L 为 MSE;图中的上标 (1) 或 (2) 分别表示参数属于第 (1) 层或第 (2) 层,下标 1 或 2 分别表示该层的第 1 或 第 2 个神经元。
现在我们来计算 和 ,掌握了这 2 个参数的偏导数计算之后,整个梯度的计算就掌握了。
所谓反向传播算法,指的是从右向左来计算每个参数的偏导数,先计算 ,根据链式法则
对左边项用链式法则展开
又 是输出值, 可以直接通过 MSE 的导数算出:
而 ,则 就是 sigmoid 函数的导数在 处的值,即
于是 就算出来了:
再来看 这一项,因为
所以
注意:上面式子对于所有的 和 都成立,且结果非常直观,即 对 的偏导为左边的输入 的大小;同时,这里还隐含着另一层意思:需要调整哪个 来影响 ,才能使 Loss 下降得最快,从该式子可以看出,当然是先调整较大的 值所对应的 ,效果才最显著 。
于是,最后一层参数 的偏导数就算出来了
我们再来算上一层的 ,根据链式法则 :
继续展开左边这一项
你发现没有,这几乎和计算最后一层一摸一样,但需要注意的是,这里的 对 Loss 造成的影响有多条路径,于是对于只有 2 个输出的本例来说:
上式中, 都已经在最后一层算出,下面我们来看下 ,因为
于是
同理
注意:这里也引申出梯度下降的调参直觉:即要使 Loss 下降得最快,优先调整 weight 值比较大的 weight。
至此, 也算出来了
观察上式, 所谓每个参数的偏导数,通过反向传播算法,都可以转换成线性加权(Weighted Sum)计算 ,归纳如下:
式子中 n 代表分类数,(l) 表示第 l 层,i 表示第 l 层的第 i 个神经元。 既然反向传播就是一个线性加权,那整个神经网络就可以借助于 GPU 的矩阵并行计算了 。
最后,当你明白了神经网络的原理,是不是越发的认为,它就是在做一堆的微积分运算,当然,作为能证明一个人是否学过微积分,神经网络还是值得学一下的。Just kidding ..
本文我们通过
这四点,全面的学习了神经网络这个知识点,希望本文能给你带来帮助。
参考:
⑦ 神经网络算法是什么
Introction
--------------------------------------------------------------------------------
神经网络是新技术领域中的一个时尚词汇。很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍所有关于神经网络的基本包括它的功能、一般结构、相关术语、类型及其应用。
“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。在本文,我会同时使用这两个互换的术语。
一个真正的神经网络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。在这里有一个难题:我们对生物学上的神经网络知道的不多!因此,不同类型之间的神经网络体系结构有很大的不同,我们所知道的只是神经元基本的结构。
The neuron
--------------------------------------------------------------------------------
虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。基本神经元包含有synapses、soma、axon及dendrites。Synapses负责神经元之间的连接,它们不是直接物理上连接的,而是它们之间有一个很小的空隙允许电子讯号从一个神经元跳到另一个神经元。然后这些电子讯号会交给soma处理及以其内部电子讯号将处理结果传递给axon。而axon会将这些讯号分发给dendrites。最后,dendrites带着这些讯号再交给其它的synapses,再继续下一个循环。
如同生物学上的基本神经元,人工的神经网络也有基本的神经元。每个神经元有特定数量的输入,也会为每个神经元设定权重(weight)。权重是对所输入的资料的重要性的一个指标。然后,神经元会计算出权重合计值(net value),而权重合计值就是将所有输入乘以它们的权重的合计。每个神经元都有它们各自的临界值(threshold),而当权重合计值大于临界值时,神经元会输出1。相反,则输出0。最后,输出会被传送给与该神经元连接的其它神经元继续剩余的计算。
Learning
--------------------------------------------------------------------------------
正如上述所写,问题的核心是权重及临界值是该如何设定的呢?世界上有很多不同的训练方式,就如网络类型一样多。但有些比较出名的包括back-propagation, delta rule及Kohonen训练模式。
由于结构体系的不同,训练的规则也不相同,但大部份的规则可以被分为二大类别 - 监管的及非监管的。监管方式的训练规则需要“教师”告诉他们特定的输入应该作出怎样的输出。然后训练规则会调整所有需要的权重值(这是网络中是非常复杂的),而整个过程会重头开始直至数据可以被网络正确的分析出来。监管方式的训练模式包括有back-propagation及delta rule。非监管方式的规则无需教师,因为他们所产生的输出会被进一步评估。
Architecture
--------------------------------------------------------------------------------
在神经网络中,遵守明确的规则一词是最“模糊不清”的。因为有太多不同种类的网络,由简单的布尔网络(Perceptrons),至复杂的自我调整网络(Kohonen),至热动态性网络模型(Boltzmann machines)!而这些,都遵守一个网络体系结构的标准。
一个网络包括有多个神经元“层”,输入层、隐蔽层及输出层。输入层负责接收输入及分发到隐蔽层(因为用户看不见这些层,所以见做隐蔽层)。这些隐蔽层负责所需的计算及输出结果给输出层,而用户则可以看到最终结果。现在,为免混淆,不会在这里更深入的探讨体系结构这一话题。对于不同神经网络的更多详细资料可以看Generation5 essays
尽管我们讨论过神经元、训练及体系结构,但我们还不清楚神经网络实际做些什么。
The Function of ANNs
--------------------------------------------------------------------------------
神经网络被设计为与图案一起工作 - 它们可以被分为分类式或联想式。分类式网络可以接受一组数,然后将其分类。例如ONR程序接受一个数字的影象而输出这个数字。或者PPDA32程序接受一个坐标而将它分类成A类或B类(类别是由所提供的训练决定的)。更多实际用途可以看Applications in the Military中的军事雷达,该雷达可以分别出车辆或树。
联想模式接受一组数而输出另一组。例如HIR程序接受一个‘脏’图像而输出一个它所学过而最接近的一个图像。联想模式更可应用于复杂的应用程序,如签名、面部、指纹识别等。
The Ups and Downs of Neural Networks
--------------------------------------------------------------------------------
神经网络在这个领域中有很多优点,使得它越来越流行。它在类型分类/识别方面非常出色。神经网络可以处理例外及不正常的输入数据,这对于很多系统都很重要(例如雷达及声波定位系统)。很多神经网络都是模仿生物神经网络的,即是他们仿照大脑的运作方式工作。神经网络也得助于神经系统科学的发展,使它可以像人类一样准确地辨别物件而有电脑的速度!前途是光明的,但现在...
是的,神经网络也有些不好的地方。这通常都是因为缺乏足够强大的硬件。神经网络的力量源自于以并行方式处理资讯,即是同时处理多项数据。因此,要一个串行的机器模拟并行处理是非常耗时的。
神经网络的另一个问题是对某一个问题构建网络所定义的条件不足 - 有太多因素需要考虑:训练的算法、体系结构、每层的神经元个数、有多少层、数据的表现等,还有其它更多因素。因此,随着时间越来越重要,大部份公司不可能负担重复的开发神经网络去有效地解决问题。
NN 神经网络,Neural Network
ANNs 人工神经网络,Artificial Neural Networks
neurons 神经元
synapses 神经键
self-organizing networks 自我调整网络
networks modelling thermodynamic properties 热动态性网络模型
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
网格算法我没听说过
好像只有网格计算这个词
网格计算是伴随着互联网技术而迅速发展起来的,专门针对复杂科学计算的新型计算模式。这种计算模式是利用互联网把分散在不同地理位置的电脑组织成一个“虚拟的超级计算机”,其中每一台参与计算的计算机就是一个“节点”,而整个计算是由成千上万个“节点”组成的“一张网格”, 所以这种计算方式叫网格计算。这样组织起来的“虚拟的超级计算机”有两个优势,一个是数据处理能力超强;另一个是能充分利用网上的闲置处理能力。简单地讲,网格是把整个网络整合成一台巨大的超级计算机,实现计算资源、存储资源、数据资源、信息资源、知识资源、专家资源的全面共享。
⑧ 神经网络算法相对于普通的算法的优越性在哪啊! 例如在曲线拟合方面与基本的命令有什么区别 信号处理不也
优点:
(1)对特征数据无要求,不需相互独立
(2)适用于非线性问题;
缺点:
(1)黑箱,即难以解释其运算结果;
(2)需要较多的训练数据;
(3)存在过拟合;
⑨ BP神经网络的核心问题是什么其优缺点有哪些
人工神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,就是使用人工神经网络方法实现模式识别.可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,神经网络方法允许样品有较大的缺损和畸变.神经网络的类型很多,建立神经网络模型时,根据研究对象的特点,可以考虑不同的神经网络模型. 前馈型BP网络,即误差逆传播神经网络是最常用,最流行的神经网络.BP网络的输入和输出关系可以看成是一种映射关系,即每一组输入对应一组输出.BP算法是最著名的多层前向网络训练算法,尽管存在收敛速度慢,局部极值等缺点,但可通过各种改进措施来提高它的收敛速度,克服局部极值现象,而且具有简单,易行,计算量小,并行性强等特点,目前仍是多层前向网络的首选算法.
多层前向BP网络的优点:
网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题;
网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;
网络具有一定的推广、概括能力。
多层前向BP网络的问题:
从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;
网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。
难以解决应用问题的实例规模和网络规模间的矛盾。这涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题;
网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验选定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题;
新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;
网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,而不能反映样本内含的规律
由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;
存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;
为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。