① 跪求som神经网络的MATLAB源代码,谢谢各位大哥大姐。如果运行结果代码正确,高分相送。
SOM:
close all
clf reset
figure(gcf);
echo on
pause
clc
p=zscore(data);%biaozhunhua
pause
clc
plot3(p(:,1),p(:,2),p(:,3),'*');
axis([0 1 0 1]);
title('Input data');
pause
clc
net=newsom([0 1;0 1],[9]);
pause
clc
net.trainParam.epochs=100;
net=train(net,p);
pause
clc
figure;
w=net.IW{1};
%IW 是输入层到第一层的权值矩阵
%LW 是中间层和输出层,也就是神经内元到神经元的权值
%b 是第Ni层的偏向向容量
plotsom(net.IW{1,1},net.layers{1}.distances);
pause
clc
a=sim(net,[0.6;0.8])
echo off
② 数据挖掘干货总结(四)--聚类算法
本文共计2680字,预计阅读时长七分钟
聚类算法
一 、 本质
将数据划分到不同的类里,使相似的数据在同一类里,不相似的数据在不同类里
二 、 分类算法用来解决什么问题
文本聚类、图像聚类和商品聚类,便于发现规律,以解决数据稀疏问题
三 、 聚类算法基础知识
1. 层次聚类 vs 非层次聚类
– 不同类之间有无包含关系
2. 硬聚类 vs 软聚类
– 硬聚类:每个对象只属于一个类
– 软聚类:每个对象以某个概率属于每个类
3. 用向量表示对象
– 每个对象用一个向量表示,可以视为高维空间的一个点
– 所有对象形成数据空间(矩阵)
– 相似度计算:Cosine、点积、质心距离
4. 用矩阵列出对象之间的距离、相似度
5. 用字典保存上述矩阵(节省空间)
D={(1,1):0,(1,2):2,(1,3):6...(5,5):0}
6. 评价方法
– 内部评价法(Internal Evalution):
• 没有外部标准,非监督式
• 同类是否相似,跨类是否相异
DB值越小聚类效果越好,反之,越不好
– 外部评价法(External Evalution):
• 准确度(accuracy): (C11+C22) / (C11 + C12 + C21 + C22)
• 精度(Precision): C11 / (C11 + C21 )
• 召回(Recall): C11 / (C11 + C12 )
• F值(F-measure):
β表示对精度P的重视程度,越大越重视,默认设置为1,即变成了F值,F较高时则能说明聚类效果较好。
四 、 有哪些聚类算法
主要分为 层次化聚类算法 , 划分式聚类算法 , 基于密度的聚类算法 , 基于网格的聚类算法 , 基于模型的聚类算法等 。
4.1 层次化聚类算法
又称树聚类算法,透过一种层次架构方式,反复将数据进行分裂或聚合。典型的有BIRCH算法,CURE算法,CHAMELEON算法,Sequence data rough clustering算法,Between groups average算法,Furthest neighbor算法,Neares neighbor算法等。
凝聚型层次聚类 :
先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。
算法流程:
1. 将每个对象看作一类,计算两两之间的最小距离;
2. 将距离最小的两个类合并成一个新类;
3. 重新计算新类与所有类之间的距离;
4. 重复2、3,直到所有类最后合并成一类。
特点:
1. 算法简单
2. 层次用于概念聚类(生成概念、文档层次树)
3. 聚类对象的两种表示法都适用
4. 处理大小不同的簇
5. 簇选取步骤在树状图生成之后
4.2 划分式聚类算法
预先指定聚类数目或聚类中心,反复迭代逐步降低目标函数误差值直至收敛,得到最终结果。K-means,K-modes-Huang,K-means-CP,MDS_CLUSTER, Feature weighted fuzzy clustering,CLARANS等
经典K-means:
算法流程:
1. 随机地选择k个对象,每个对象初始地代表了一个簇的中心;
2. 对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;
3. 重新计算每个簇的平均值,更新为新的簇中心;
4. 不断重复2、3,直到准则函数收敛。
特点:
1.K的选择
2.中心点的选择
– 随机
– 多轮随机:选择最小的WCSS
3.优点
– 算法简单、有效
– 时间复杂度:O(nkt)
4.缺点
– 不适于处理球面数据
– 密度、大小不同的聚类,受K的限制,难于发现自然的聚类
4.3 基于模型的聚类算法
为每簇假定了一个模型,寻找数据对给定模型的最佳拟合,同一”类“的数据属于同一种概率分布,即假设数据是根据潜在的概率分布生成的。主要有基于统计学模型的方法和基于神经网络模型的方法,尤其以基于概率模型的方法居多。一个基于模型的算法可能通过构建反应数据点空间分布的密度函数来定位聚类。基于模型的聚类试图优化给定的数据和某些数据模型之间的适应性。
SOM 神经网络算法 :
该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。
SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。
算法流程:
1. 网络初始化,对输出层每个节点权重赋初值;
2. 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量;
3. 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢;
4. 提供新样本、进行训练;
5. 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。
4.4 基于密度聚类算法
只要邻近区域的密度(对象或数据点的数目)超过某个阈值,就继续聚类,擅于解决不规则形状的聚类问题,广泛应用于空间信息处理,SGC,GCHL,DBSCAN算法、OPTICS算法、DENCLUE算法。
DBSCAN:
对于集中区域效果较好,为了发现任意形状的簇,这类方法将簇看做是数据空间中被低密度区域分割开的稠密对象区域;一种基于高密度连通区域的基于密度的聚类方法,该算法将具有足够高密度的区域划分为簇,并在具有噪声的空间数据中发现任意形状的簇。
4.5 基于网格的聚类算法
基于网格的方法把对象空间量化为有限数目的单元,形成一个网格结构。所有的聚类操作都在这个网格结构(即量化空间)上进行。这种方法的主要优点是它的处理 速度很快,其处理速度独立于数据对象的数目,只与量化空间中每一维的单元数目有关。但这种算法效率的提高是以聚类结果的精确性为代价的。经常与基于密度的算法结合使用。代表算法有STING算法、CLIQUE算法、WAVE-CLUSTER算法等。
③ 数据挖掘中的聚类算法聚成几类是人为设定还是自动的用SOM神经网络做聚类是不是就是人为设定好聚几类
分类是开始有训练集,通过大量样本集进行分类,然后对待测数据进行归类内,通过计算,看样本集中容的数据属于哪一类就放在该类下面;而聚类是根据自己确定k值,确定聚类中心点,通过算法来实现聚类,聚类是无监督的。聚类算法聚类几类是需要大量数据分析的,通过取得k值的不同,看哪一次的聚类的效果最好。k值是认为确定,但是需要大量数据分析的。不是随机想分为几类就几类的
④ 神经网络Kohonen模型
一、Kohonen模型概述
1981年芬兰赫尔辛基大学Kohonen教授提出了一个比较完整的,分类性能较好的自组织特征影射(Self-Organizing Feature Map)人工神经网络(简称SOM网络)方案。这种网络也称为Kohonen特征影射网络。
这种网络模拟大脑神经系统自组织特征影射功能,它是一种竞争式学习网络,在学习中能无监督地进行自组织学习。
二、Hohonen模型原理
1.概述
SOM网络由输入层和竞争层组成。输入层神经元数为N,竞争层由M=R×C神经元组成,构成一个二维平面阵列或一个一维阵列(R=1)。输入层和竞争层之间实现全互连接。
SOM网络的基本思想是网络竞争层各神经元竞争对输入模式的响应机会,最后仅有一个神经元成为竞争的胜者,并对那些与获胜神经元有关的各连接权朝着更有利于它竞争的方向调整,这一获胜神经元就表示对输入模式的分类。
SOM算法是一种无教师示教的聚类方法,它能将任意输入模式在输出层映射成一维或二维离散图形,并保持其拓扑结构不变。即在无教师的情况下,通过对输入模式的自组织学习,在竞争层将分类结果表示出来。此外,网络通过对输入模式的反复学习,可以使连接权矢量空间分布密度与输入模式的概率分布趋于一致,即连接权矢量空间分布能反映输入模式的统计特征。
2.网络权值初始化
因为网络输入很可能出现在中间区,因此,如果竞争层的初始权值选择在输入空间的中间区,则其学习效果会更加有效。
3.邻域距离矩阵
SOM网络中的神经元可以按任何方式排列,这种排列可以用表示同一层神经元间的Manhattan距离的邻域距离矩阵D来描述,而两神经元的Manhattan距离是指神经元坐标相减后的矢量中,其元素绝对值之和。
4.Kohonen竞争学习规则
设SOM网络的输入模式为Xp=(
Wj=(wj1,wj2,…,wjN),j=1,2,…,M。
Kohonen网络自组织学习过程包括两个部分:一是选择最佳匹配神经元,二是权矢量自适应变化的更新过程。
确定输入模式Xp与连接权矢量Wj的最佳匹配的评价函数是两个矢量的欧氏距离最小,即
g,确定获胜神经元g。
dg=mjin(dj),j=1,2,…,M。
求输入模式Xp在竞争层的获胜神经元g及其在邻域距离nd内的神经元的输出。
中国矿产资源评价新技术与评价新模型
dgm为邻域距离矩阵D的元素,为竞争层中获胜神经元g与竞争层中其它神经元的距离。
求输入模式Xp在竞争层的获胜神经元g及其在邻域距离nd内的神经元的权值修正值。
中国矿产资源评价新技术与评价新模型
式中:i=1,2,…,N;
lr为学习速率;
t为学习循环次数。
Δwjt(t+1)的其余元素赋值为0。
进行连接权的调整
wji(t+1)=wji(t)+Δwji(t+1)。
5.权值学习中学习速率及邻域距离的更新
(1)SOM网络的学习过程分为两个阶段
第一阶段为粗学习与粗调整阶段。在这一阶段内,连接权矢量朝着输入模式的方向进行调整,神经元的权值按照期望的方向在适应神经元位置的输入空间建立次序,大致确定输入模式在竞争层中所对应的影射位置。一旦各输入模式在竞争层有了相对的影射位置后,则转入精学习与细调整阶段,即第二阶段。在这一阶段内,网络学习集中在对较小的范围内的连接权进行调整,神经元的权值按照期望的方向在输入空间伸展,直到保留到他们在粗调整阶段所建立的拓扑次序。
学习速率应随着学习的进行不断减小。
(2)邻域的作用与更新
在SOM网络中,脑神经细胞接受外界信息的刺激产生兴奋与抑制的变化规律是通过邻域的作用来体现的邻域规定了与获胜神经元g连接的权向量Wg进行同样调整的其他神经元的范围。在学习的最初阶段,邻域的范围较大,随着学习的深入进行,邻域的范围逐渐缩小。
(3)学习速率及邻域距离的更新
在粗调整阶段,
学习参数初始化
最大学习循环次数 MAX_STEP1=1000,
粗调整阶段学习速率初值 LR1=1.4,
细调整阶段学习速率初值 LR2=0.02,
最大邻域距离 MAX_ND1=Dmax,
Dmax为邻域距离矩阵D的最大元素值。
粗调阶段
学习循环次数step≤MAX_STEP1,
学习速率lr从LR1调整到LR2,
邻域距离nd 从MAX_ND1调整到1,
求更新系数r,
r=1-step/MAX_STEP1,
邻域距离nd更新,
nd=1.00001+(MAX_ND1-1)×r。
学习速率lr更新,
lr=LR2+(LR1-LR2)×r。
在细调整阶段,
学习参数初始化,
最大学习循环次数 MAX_STEP2=2000,
学习速率初值 LR2=0.02,
最大邻域距离 MAX_ND2=1。
细调阶段
MAX_STEP1<step≤MAX_STEP1+MAX_STEP2,
学习速率lr慢慢从LR2减少,
邻域距离nd设为1,
邻域距离nd更新,
nd=MAX_ND2+0.00001。
学习速率lr更新,
lr=LR2×(MAX_STEP1/step)。
6.网络的回想——预测
SOM网络经学习后按照下式进行回想:
中国矿产资源评价新技术与评价新模型
Yj=0,j=1,2,…,M,(j≠g)。
将需要分类的输入模式提供给网络的输入层,按照上述方法寻找出竞争层中连接权矢量与输入模式最接近的神经元,此时神经元有最大的激活值1,而其它神经元被抑制而取0值。这时神经元的状态即表示对输入模式的分类。
三、总体算法
1.SOM权值学习总体算法
(1)输入参数X[N][P]。
(2)构造权值矩阵W[M][N]。
1)由X[N][P]求Xmid[N],
2)由Xmid[N]构造权值W[M][N]。
(3)构造竞争层。
1)求竞争层神经元数M,
2)求邻域距离矩阵D[M][M],
3)求矩阵D[M][M]元素的最大值Dmax。
(4)学习参数初始化。
(5)学习权值W[M][N]。
1)学习参数学习速率lr,邻域距离nd更新,分两阶段:
(i)粗调阶段更新;
(ii)细调阶段更新。
2)求输入模式X[N][p]在竞争层的获胜神经元win[p]。
(i)求X[N][p]与W[m][N]的欧氏距离dm;
(ii)按距离dm最短,求输入模式X[N][p]在竞争层的获胜神经元win[p]。
3)求输入模式X[N][p]在竞争层的获胜神经元win[p]及其在邻域距离nd内的神经元的输出Y[m][p]。
4)求输入模式X[N][p]在竞争层的获胜神经元win[p]及其
在邻域距离nd内的神经元的权值修正值ΔW[m][N],
从而得到输入模式X[N][p]产生的权值修正值ΔW[M][N]。
5)权值修正W[M][N]=W[M][N]+ΔW[M][N]。
6)学习结束条件:
(i)学习循环到MAX_STEP次;
(ii)学习速率lr达到用户指定的LR_MIN;
(iii)学习时间time达到用户指定的TIME_LIM。
(6)输出。
1)学习得到的权值矩阵W[M][N];
2)邻域距离矩阵D[M][M]。
(7)结束。
2.SOM预测总体算法
(1)输入需分类数据X[N][P],邻域距离矩阵D[M][M]。
(2)求输入模式X[N][p]在竞争层的获胜神经元win[p]。
1)求X[N][p]与W[m][N]的欧氏距离dm;
2)按距离dm最短,求输入模式X[N][p]在竞争层的获胜神经元win[p]。
(3)求获胜神经元win[p]在竞争层排列的行列位置。
(4)输出与输入数据适应的获胜神经元win[p]在竞争层排列的行列位置,作为分类结果。
(5)结束。
四、总体算法流程图
Kohonen总体算法流程图见附图4。
五、数据流图
Kohonen数据流图见附图4。
六、无模式识别总体算法
假定有N个样品,每个样品测量M个变量,则有原始数据矩阵:
X=(xij)N×M,i=1,2,…,N,j=1,2,…,M。
(1)原始数据预处理
X=(xij)N×M处理为Z=(zij)N×M,
分3种处理方法:
1)衬度;
2)标准化;
3)归一化。
程序默认用归一化处理。
(2)构造Kohonen网
竞争层与输入层之间的神经元的连接权值构成矩阵WQ×M。
WQ×M初始化。
(3)进入Kohonen网学习分类循环,用epoch记录循环次数,epoch=1。
(4)在每个epoch循环中,对每个样品n(n=1,2,…,N)进行分类。从1个样品n=1开始。
(5)首先计算输入层的样品n的输入数据znm(m=1,2,…,M)与竞争层Q个神经元对应权值wqm的距离。
(6)寻找输入层的样品n与竞争层Q个神经元的最小距离,距离最小的神经元Win[n]为获胜神经元,将样品n归入获胜神经元Win[n]所代表的类型中,从而实现对样品n的分类。
(7)对样品集中的每一个样品进行分类:
n=n+1。
(如果n≤N,转到5。否则,转到8。)
(8)求分类后各神经元所对应的样品的变量的重心,用对应的样品的变量的中位数作为重心,用对应的样品的变量的重心来更新各神经元的连接权值。
(9)epoch=epoch+1;
一次学习分类循环结束。
(10)如果满足下列两个条件之一,分类循环结束,转到11;
否则,分类循环继续进行,转到4。
1)全部样品都固定在某个神经元上,不再改变了;
2)学习分类循环达到最大迭代次数。
(11)输出:
1)N个样品共分成多少类,每类多少样品,记录每类的样品编号;
2)如果某类中样品个数超过1个,则输出某类的样品原始数据的每个变量的均值、最小值、最大值和均方差;
3)如果某类中样品个数为1个,则输出某类的样品原始数据的各变量值;
4)输出原始数据每个变量(j=1,2,…,M)的均值,最小值,最大值和均方差。
(12)结束。
七、无模式识别总体算法流程图
Kohonen无模式总体算法流程图见附图5。
⑤ som神经网络中竞争层神经元数目怎么确定
输出层神经元数量设定和训练集样本的类别数相关,但是实际中我们往往不能清除地知道有多少类。如果神经元节点数少于类别数,则不足以区分全部模式,训练的结果势必将相近的模式类合并为一类;相反,如果神经元节点数多于类别数,则有可能分的过细,或者是出现“死节点”,即在训练过程中,某个节点从未获胜过且远离其他获胜节点,因此它们的权值从未得到过更新。
不过一般来说,如果对类别数没有确定知识,宁可先设定较多的节点数,以便较好的映射样本的拓扑结构,如果分类过细再酌情减少输出节点。“死节点”问题一般可通过重新初始化权值得到解决。