㈠ 阿里云ssd和高效云盘有什么区别
区别如下:
1、SSD是用固态电子存储芯片阵列而制成的硬盘,由控制单元和存储单元(FLASH芯片、DRAM芯片)组成。
SSD在接口的规范和定义、功能及使用方法上与普通硬盘的完全相同,在产品外形和尺寸上也完全与普通硬盘一致。被广泛应用于军事、车载、工控、视频监控、网络监控、网络终端、电力、医疗、航空、导航设备等诸多领域。
2、高效云盘是一种专业的互联网存储工具,是互联网云技术的产物,它通过互联网为企业和个人提供信息的储存,读取,下载等服务。
高效云盘具有以下特点:
①、安全保密:密码和手机绑定、空间访问信息随时告知
②、超大存储空间:不限单个文件大小,最多支持无限独享存储空间
③、好友共享:通过提取码轻松分享。
SSD优点:
1、读写速度快:采用闪存作为存储介质,读取速度相对机械硬盘更快。固态硬盘不用磁头,寻道时间几乎为0。持续写入的速度非常惊人,固态硬盘厂商大多会宣称自家的固态硬盘持续读写速度超过了500MB/s!
固态硬盘的快绝不仅仅体现在持续读写上,随机读写速度快才是固态硬盘的终极奥义,这最直接体现在绝大部分的日常操作中。与之相关的还有极低的存取时间,最常见的7200转机械硬盘的寻道时间一般为12-14毫秒,而固态硬盘可以轻易达到0.1毫秒甚至更低。
2、防震抗摔性:传统硬盘都是磁碟型的,数据储存在磁碟扇区里。而固态硬盘是使用闪存颗粒(即mp3、U盘等存储介质)制作而成,所以SSD固态硬盘内部不存在任何机械部件,这样即使在高速移动甚至伴随翻转倾斜的情况下也不会影响到正常使用,而且在发生碰撞和震荡时能够将数据丢失的可能性降到最小。相较传统硬盘,固态硬盘占有绝对优势。
3、低功耗:固态硬盘的功耗上要低于传统硬盘。
4、无噪音:固态硬盘没有机械马达和风扇,工作时噪音值为0分贝。基于闪存的固态硬盘在工作状态下能耗和发热量较低(但高端或大容量产品能耗会较高)。内部不存在任何机械活动部件,不会发生机械故障,也不怕碰撞、冲击、振动。由于固态硬盘采用无机械部件的闪存芯片,所以具有了发热量小、散热快等特点。
5、工作温度范围大:典型的硬盘驱动器只能在5到55摄氏度范围内工作。而大多数固态硬盘可在-10~70摄氏度工作。固态硬盘比同容量机械硬盘体积小、重量轻。固态硬盘的接口规范和定义、功能及使用方法上与普通硬盘的相同,在产品外形和尺寸上也与普通硬盘一致。其芯片的工作温度范围很宽(-40~85摄氏度)。
6、轻便:固态硬盘在重量方面更轻,与常规1.8英寸硬盘相比,重量轻20-30克。
㈡ 如何在数据库应用中发挥SSD的优势
利用固态硬盘(SSD)技术的优势设计数据库应用架构是非常有吸引力的一件事。特别值得注意的是,固态硬盘并行访问数据的能力已经有了很大的提升。这些提升使得固态硬盘对于许多类型的数据库应用几乎能达到了随机访问内存存储的性能,而成本只是其八分之一。
在过去的几年里,固态硬盘的性能得到了突飞猛进的增长,同时相比于传统硬盘和RAM,其成本却在持续降低。但是要利用好这些改进的优势,需要掌握存储特性选择合适的AWS实例大小,理解应用特性并利用合适的编程语言。
掌握AWS选项
AWS IaaS EC2实例可以配置不同级别的存储:
A)内存。对应于传统物理计算机的RAM。
B)实例存储。也称为临时存储。它对应于传统物理计算机的磁盘大小。
C)灵活的持久化补充存储(比如EBS和S3)。基本上可以把它视为物理PC的网络存储。
Amazon现在把SSD作为部署临时存储和通用存储的默认配置,也是EBS的默认配置(早期的实例类型默认不是SSD)。EBS的其它好处是存储系统可以在数据库服务器本身退役以后仍然继续可用。
此外,AWS还提供SSD存储作为Amazon DynamoDB的默认选项。SSD同时也是Amazon RDS和Amazon
Redshift的可选配置。这个配置非常好,它可以降低数据库应用需要的开发代价。但是,如果企业需要部署其它数据库,也有很多其它可配置项可以帮助他
们利用到SSD的并行特性。
并行存储的物理原理
物理计算机通常设置有三种主要存储类型。RAM安装在主板上,紧挨着CPU,它提供最高的性能,成本代价也最高,计算机关闭以后内容不会保存。
SSD和传统硬盘是连接到计算机上的补充存储,通过PCI-e,SCSI和SATA线缆连接,或者在网络上通过eSATA或者光纤通道连接。
传统硬盘包含有一个物理读写头,一次可以跨多个物理盘片读取数据流。如果数据可以顺序读取(比如读取较大的多媒体视频音频文件),或者对于一些
数据库分析应用(比如Hadoop应用),这种模式都非常合适。然而,如果读取数据要搜索盘片的多个扇区,那么传统硬盘读写头的性能会急剧下降。
与此相反,闪存驱动的物理构成就是成百上千个可以随机访问的块,是由分散的许多芯片组成的,读取哪一块的数据不会影响访问性能。闪存盘有两个瓶颈:第一就是计算机处理器和个体芯片储存区之间的存储控制器;第二是不能从单个芯片上的不同块区同时读取随机数据。
当今时代的大部分数据库引擎都没有利用闪存盘访问数据随机位的功能优势。其结果是,数据库都比较慢,或者虽然其访问模式可以被缓存,但需要更多
RAM才能实现同样的性能效果。而RAM存储肯定比闪存盘速度快,不过对于相同数量的存储空间,RAM的成本是闪存盘的十倍。在物理层面上,RAM比
SSD有更好的IO处理能力,但是成本也是其大约三到四倍。这些相对成本也被反映到了Amazon Web服务上可用的不同计算机实例相对成本上。
写入队列
利用跨多个芯片并行访问数据能力优势的关键在于编写程序时要考虑到队列深度这一特性。在数据库应用中增加队列深度可以使应用从SSD不同个体芯片中并行读写数据,这对提高数据库性能有直接的效果。
如果队列深度设置过大,访问同一芯片中不同数据位的可能性就增大了,这也会破坏性能。因此,大部分应用的最佳队列深度是每驱动器32到64个并
发请求,尽管驱动器本身支持更多并发请求。通过优化数据库应用访问SSD的队列深度,应用程序可以花更少的代价就能达到用更昂贵RAM才能实现的更佳性能
状态。
在应用层面,开发者需要考虑如何实现应用对存储系统的请求队列化,以实现并行处理。但是,软件方面要获得较好的并行有许多陷阱。要用像
JavaScript、Ruby和Python这样的编程语言实现并行是很困难的,因为这些语言对实现多线程支持的不太好,Java和C#相对更容易一
些。
C和C++是实现高并发系统代码最合适的编程语言,因为它们直接操作操作系统核心功能。例如,互斥扩展(也叫互斥量)就是简化编程生成低级系统并行调用的语言特性。另一种选择是使用自带SSD存储优化方案的商业数据库,比如Aerospike。
为应用选择合适的架构
不是所有的数据库应用都需要闪存存储功能来并行访问随机数据。处理大量并发用户Web请求的数据库很容易看到闪存存储的最大优势。
与此相反,像Hadoop这种分析应用在某种意义上是并行的,但是通常这些应用最后都需要访问存储驱动器上的大量数据流来完成数据访问。例如,
处理一个月的用户日志来分析其行为或者分析用户,本质上都要按顺序提取数据,因此迁移到SSD并不能带来太多益处。在这两种极端场景之间,还有一些实时分
析类型的应用,它们既需要一定的随机搜索和也需要数据流处理。
专家建议,充分利用各种层次成本差异的一种方式是,配置数据库利用临时存储读取数据以获得最佳性能。这一点可以通过存储在EBS持久化数据层的数据进行备份。这种方案提供了AWS上价格和性能的最佳平衡组合。
后台进程也需要考虑
数据库应用架构师还应该考虑其它细微特征。要理解数据库软件如何利用RAM,如何把数据刷到磁盘,这些对于优化SSD应用配置非常重要。这对于
评估数据库与文件系统交互的各种方式也非常重要。最明显的读负载繁重会有大量后台IO竞争。而其他进程像报表系统、日志文件生成是需要后台维护的。
要想找到合适的平衡点,专家建议以真实世界部署的强大指标为基准进行参考。这样可以帮助企业判断部署和优化SSD系统有多大益处。不过,在RAM和SSD之间选择,最重要的考虑因素是深刻掌握要处理的数据集大小。
配置合适的SSD和RAM容量有许多种组合,会增加数据库更高的复杂度。更多的是传统数据库系统,它们会部署一台主服务器和许多备用服务器用于
故障恢复,除了在磁盘级别的情况它们的配置都很简单。另一方面,分布式数据库系统根据节点数量不同,RAM数量和网络设置的不同会有更多的变化。
尽管在大多数情况下,如果你关注技术的力量和数据库系统的可操作性作为选择硬件驱动器的考虑因素,那么你需要比较评估的系统应该相对不会很多。
㈢ 互联网时代处理大量流动性数据社交网络数据最好使用哪些类型数据库
使用现有的主要吸引力一、可扩展的NoSQL数据库
如果您的整个 _active set_ 适合单个机器的主内存(现代商品机器可以高达 128GB +),那么您就没有水平可扩展性问题:即,您绝对没有理由进行分区(“分片") ) 你的数据库和放弃关系。如果您的活动数据集适合内存,那么任何带有索引的适当调整的数据库都将表现得足够好,可以在数据库本身成为限制之前使您的以太网卡饱和。
如果您认为关系模型本身并不合适,您可以轻松地在 MySQL 之上构建一个“面向文档的存储”:这就是 Friendfeed 最终要做的,我会遵循他们的模型(除非我使用 Avro (软件)、Apache Thrift 或 Google Protocol Buffers 而不是特定于语言的序列化)-
http://bret.appspot.com/entry/how-friendfeed-uses-mysql
如果您的站点变得非常成功,您将拥有一个不再适合您机器的主内存的活动集。在这种情况下,设计不当的存储引擎的性能会迅速下降。但是,MySQL 的 InnoDB(或 Postgres 的存储引擎)仍然允许您使用旋转磁盘保持(取决于您的请求分布)大约 2:1-5:1 的数据与内存比率。一旦超出这个范围,性能就会开始迅速下降(因为您要为每个请求进行多次磁盘搜索)。现在,您最好的做法是升级到 SSD(固态驱动器),这再次允许您在数据库成为限制之前使以太网卡饱和。
最后,当您遇到不适合的数据集大小时,例如,软件 raid 1 + 0 配置中的多个 SSD(同时为备份、多个版本的数据等提供空间...),那么您必须水平缩放。也就是说,您必须使用本质上支持分区的数据库(例如 Riak、Voldemort、Cassandra、HBase),或者在基于 MySQL/Postgres 的数据存储之上构建应用程序级分区层。我无法告诉您哪种解决方案是正确的,因为我(或您)都不知道您的数据及其访问模式在那时会是什么样子。也就是说,编写自己的分片层是您可以在代码中引入额外错误的另一个地方:不必构建自己的分布式数据库(您通过构建分片层有效地做的事情)是使用现有的主要吸引力一、可扩展的NoSQL数据
㈣ 数据库就一定要用固态硬盘吗
不一定要用,服务器上面要么连接san存储,要么本地盘通过sas卡做raid阵列,本身性能并不差,但如果你自己用台式机,没有sas卡,这时候可以用ssd。
㈤ 用固态硬盘装系统用机械硬盘做数据盘好点还是系统和数据库全都用固态硬盘好些
建议用固态硬盘做系统盘,机械硬盘做数据盘,因为一固态硬盘容量大的很贵,用它存储数据不安全(固态硬盘是集成电路IC,如果IC芯片烧坏了在宝贵的资料神仙也就不了的),反之,机械硬盘还是可以数据恢复的。